
Task-Specific Technical Change and
Comparative Advantage*

Lukas Althoff† Hugo Reichardt‡

[Most recent version here]

January 13, 2026

Abstract

Artificial intelligence is changing which tasks workers do and how they
do them. Predicting its labor market consequences requires understand-
ing how technical change affects workers’ productivity across tasks, how
workers adapt by changing occupations and acquiring new skills, and how
wages adjust in general equilibrium. We introduce a dynamic task-based
model in which workers accumulate multidimensional skills that shape
their comparative advantage and, in turn, their occupational choices. We
then develop an estimation strategy that recovers (i) the mapping from
skills to task-specific productivity, (ii) the law of motion for skill accumu-
lation, and (iii) the determinants of occupational choice. We use the quanti-
fied model to study generative AI’s impact via augmentation, automation,
and a third and new channel—simplification—which captures how tech-
nologies change the skills needed to perform tasks. Our key finding is that
AI substantially reduces wage inequality while raising average wages by
21 percent. AI’s equalizing effect is fully driven by simplification, enabling
workers across skill levels to compete for the same jobs. We show that the
model’s predictions line up with recent labor market data.
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1 Introduction

Technological change alters the tasks performed in production and the returns
to the skills that determine workers’ productivity in those tasks. Turning infor-
mation on how workers’ tasks change into quantitative predictions about the
labor market requires an understanding of (i) how skills map into productiv-
ity across tasks (and thus govern workers’ comparative advantage), (ii) how
workers build those skills over their careers, and (iii) how prices, wages, and
workers’ occupational choices adjust in general equilibrium. This paper de-
velops and estimates a dynamic task-based labor market model that allows re-
searchers to estimate the effects of any task-specific technical change—observed
or counterfactual—on individual workers and the overall labor market. We ap-
ply this methodology to study the labor market effects of artificial intelligence.

Our model captures key features necessary to understand the labor market
effects of task-specific technical change. Workers have multidimensional skills.
Their productivity in a given task follows from the match between these skills
and the task’s skill requirements. Workers learn on the job at a rate that depends
on their occupation and their ability to learn. Each period, they choose from
a menu of occupations, each consisting of a set of tasks. These occupational
choices are forward-looking as workers internalize that their skill accumulation
depends on those choices. In equilibrium, demand for each occupation’s output
equals the amount produced by workers choosing that occupation.

We model technical change as the augmentation, automation, and simpli-
fication of tasks. Augmentation increases human productivity in tasks. Au-
tomation expands the set of tasks that can be performed without human in-
put. Augmentation and automation are standard features of task-based models
(e.g., Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018). Beyond those
standard forces, we also consider that technology can reduce the level of skill
required to complete a task. We refer to this as simplification. Together, the three
channels determine how each worker’s productivity is affected by technical
change.

To illustrate the need for a structural framework, consider radiologists, an
occupation where AI is reshaping tasks in multiple ways: AI can assist with
detection of abnormalities, automate screening procedures, and simplify report
generation (e.g., Hosny et al., 2018; Eloundou et al., 2024; Mousa, 2025). How
do these shifts in task composition affect radiologists? Do their skills become
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more or less valuable in the era of AI? Could they transition to related medical
specialties if necessary? If retraining is required, at what pace can workers accu-
mulate new skills? Without answering such questions—jointly and in general
equilibrium—one cannot predict how workers will be impacted by AI.

To quantify how task-specific technical change affects workers using our
model, we develop a strategy to identify how workers’ skills determine abso-
lute and comparative advantage across tasks and how skills accumulate. Work-
ers’ optimal time allocation yields a closed-form mapping between task-level
productivity and occupational productivity (and observed wages). Combining
this mapping with detailed data on skill requirements, we can recover task-
level productivity from data on workers’ skills, occupations, and wages. While
we only observe skills at labor market entry, we identify skill accumulation
from workers’ occupational history and the evolution of their wages.

We estimate the model parameters that govern workers’ productivity, learn-
ing, and occupational choices by maximum likelihood using data from the
National Longitudinal Survey of Youth 1979 (NLSY79). We develop a proce-
dure that is computationally feasible despite the high-dimensional nature of the
model. First, we exploit that many parameters can either be estimated by linear
regression or be obtained with a fast iterative routine conditional on the remain-
ing parameters, substantially reducing the dimension of the parameter space
that must be searched non-linearly. Second, we recover equilibrium prices
from data directly, avoiding the need to solve the model within the estimation
routine. In our quantitative application, workers’ skills are five-dimensional:
manual, social, math, technical, and verbal. In addition, workers differ in their
“ability to learn”, that is, the rate at which they accumulate skills.1

Having estimated the model’s parameters, we provide algorithms to solve
for equilibrium prices in the steady state and over the transition path. We do
so by simulating workers’ choices and skill accumulation and updating prices
iteratively to equate demand and supply. We show how the solution to the
worker’s problem can be computed efficiently.

Our quantified model offers a laboratory to study how any counterfactual
task-specific technical change affects the labor market.2 The model predicts

1Following Heckman et al. (1998), we estimate learning ability separately by quartiles of the
Armed Forces Qualification Test: a measure of ability used by the US military to determine
enlistment eligibility.

2The estimated model can also be applied to study changes in occupational demand (since
the estimation of the supply-side parameters is independent of assumptions on demand).
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how technologies change workers’ comparative advantage, how workers real-
locate and retrain, and how prices adjust in general equilibrium.

We apply the quantified model to predict how AI will affect individual work-
ers and the labor market as a whole. We follow Eloundou et al. (2024); Ace-
moglu (2025) in using large language models (LLMs) to obtain estimates of AI’s
capability to augment, automate, and simplify tasks. Our prompts closely fol-
low the survey design used to collect assessments from human experts, while
enabling hundreds of thousands of evaluations. We provide evidence that these
LLM-generated estimates are reasonable, including validation against human
expert assessments and experimental evidence.

Our first key finding is that generative AI substantially reduces wage in-
equality—an effect fully driven by simplification—and increases average wages
by 21 percent. Simplification increases the relative productivity of lower-skill
workers in tasks and occupations that were previously the territory of higher-
skilled workers. This lowering of skill-based barriers is the key force reducing
inequality. Automation and augmentation, on the other hand, drive most of
the average effects but do not have quantitatively strong distributional impli-
cations. Simplification does not affect the average wage by much because two
opposing forces roughly cancel out: it increases productivity for given skills but
it reduces skill accumulation.

Second, we find that AI generates sizable welfare gains for almost all work-
ers at labor market entry. We estimate welfare improvements equivalent to per-
manent wage gains of 26–34% for most workers. Consistent with the decline
in wage inequality, we find that the welfare gains are largest for lower-skill
workers, reducing the returns to skills. Workers with lower verbal skills see
particularly large welfare increases. Math is the dimension of skill for which
the returns decrease the least.

Our third key finding is that AI’s impact—together with workers’ responses
to it—significantly alters the occupational landscape. AI generates a large re-
allocation of employment across occupations. For example, administrative oc-
cupations (e.g., financial clerks) see a large decline in employment, while sci-
ence occupations (e.g., life scientists) expand. On average, wages rise, but some
occupations—such as architects, engineers, and executives—see absolute wage
declines. In many cases, the occupations that experience the largest employ-
ment gains are also those for which relative wages decrease the most. This neg-
ative relationship between wage and employment effects arises from simplifica-
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tion, which makes jobs easier to perform, enlarges the pool of qualified work-
ers, and suppresses average wages through selection and increased competi-
tion (Autor and Thompson, 2025). In contrast to the simplification mechanism,
augmentation raises wages more uniformly across occupations and does not
trigger much reallocation. Automation mainly shifts employment away from
highly exposed occupations without substantially changing relative wages.

Lastly, early labor market evidence provides suggestive support for our model’s
predictions. Using an event study design around ChatGPT’s November 2022
release, we find that occupations predicted to benefit from AI show differential
positive trends in wage bill shares, with approximately 8 percent of our pre-
dicted long-run effects materializing by mid-2025. A second event study shows
that college major choices have begun to respond consistent with our predicted
changes in the labor market returns to majors.

Related literature. To predict how technologies affect workers through their
task-specific comparative advantage, we integrate three previously separate
literatures—on task-based production, multidimensional skills, and dynamic
occupational choice—in a single empirically tractable framework.

Our contribution to the literature on task-based production and technologi-
cal change is threefold (e.g., Zeira, 1998; Autor et al., 2003; Acemoglu and Autor,
2011; Acemoglu and Restrepo, 2018, 2022). First, we provide methods to esti-
mate workers’ comparative advantage across tasks, a key object in shaping how
technical change affects workers. The absence of such methods has inhibited
quantifying the effects of future technical change (Woessmann, 2024).3 Second,
while the literature on task-based production treats workers’ skills as fixed, we
allow for and estimate skill accumulation—a force shaping workers’ adapta-
tion to technical change. Third, we integrate task-based production into a gen-
eral equilibrium dynamic occupational choice model (in the spirit of Keane and
Wolpin, 1997; Heckman et al., 1998; Lee and Wolpin, 2006; Dix-Carneiro, 2014;
Traiberman, 2019; Smeets et al., 2025), capturing workers’ choices over a dis-
crete set of task-bundled occupations (Autor and Handel, 2013; Hurst et al.,
2024).

Beyond these methodological contributions, we offer a conceptual innova-

3Acemoglu and Restrepo (2022) show that the role of comparative advantage across groups
can, to a first order, be captured by a low-dimensional propagation matrix. However, estimat-
ing this matrix relies on the identification of the technology’s labor market effects, so that it
cannot be used to study effects of counterfactual technical change.
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tion by incorporating simplification into models of task-based technical change.
Relatedly, Autor and Thompson (2025) show how automation’s effect depends
on the expertise the automated task requires compared to the remaining tasks.4

This paper allows for the quantification of such effects and finds that they drive
AI’s equalizing distributional impact.

We also build on the literature emphasizing the multi-dimensionality of skills
(Lindenlaub, 2017; Guvenen et al., 2020; Lise and Postel-Vinay, 2020; Baley
et al., 2022). First, we integrate multi-dimensional comparative advantage and
skill accumulation into a model of task-based production. Second, we over-
come the empirical and computational challenges that result from this task-
based approach with a new estimation strategy. Third, to enable task-level es-
timation and counterfactual analysis, we construct a database of task-level skill
requirements. Prior work relies on O*NET’s occupational aggregates (e.g., Lise
and Postel-Vinay, 2020; Baley et al., 2022). We extend these to the task-level
using large language models and validate the database’s accuracy.

Finally, our work relates to a growing literature that quantifies the effects
of AI. Freund and Mann (2025) introduce a partial equilibrium framework to
understand how automation affects wages through changes in the importance
of tasks within an occupation, together with a strategy to estimate the distribu-
tion of workers’ task-level productivity. In comparison, our approach allows to
understand how prices, wages, and workers’ skills adjust dynamically to AI in
general equilibrium. Hampole et al. (2025) provide a structural framework to
quantify AI’s effect on occupational demand through actual adoption patterns
across firms. In contrast, our paper predicts how AI affects individual workers
and the overall labor market by modeling and estimating workers’ comparative
advantage and skill accumulation.

2 Model

We develop a model that describes how workers choose occupations, perform
tasks, and accumulate skills over their careers. Overlapping generations of
workers live for A periods. Productivity and wages depend on the match be-
tween a worker’s skills and the skill requirements of the tasks relevant to the
occupation of choice. Workers accumulate skills on the job, so that their occupa-

4Downey (2021); Danieli (2025) also consider mechanisms related to simplification in other
contexts.
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tional choice depends on the current wage as well as the learning benefits that
the job offers. Prices are determined in general equilibrium. Technical change
can take the form of augmentation, automation, and simplification of tasks.

2.1 The Firm’s and Worker’s Problem

Occupations and tasks. Each occupation produces a distinct good by combin-
ing a unique set of tasks. These tasks are combined with a constant elasticity of
substitution ρ, so that the production function of occupation j is

Yj =

 ∑
τ∈Tj

θ
1
ρ

j,τy
ρ−1

ρ
τ


ρ

ρ−1

(1)

where Tj is the discrete set of relevant tasks, yτ is the output of task τ, and θj,τ

is task τ’s importance weight that satisfies ∑τ∈Tj
θj,τ = 1.

Task-level productivity and skills. The production function for task τ in oc-
cupation j depends on whether the task is automatable, i.e., τ ∈ Aj, or not, i.e.,
τ ∈ Nj:

yτ(h, ℓτ, kτ) =


ℓτγτ f (h, rτ) if τ ∈ Nj

ℓτγτ f (h, rτ) + ϕτkτ if τ ∈ Aj

(2)

where ℓτ represents the share of time allocated to task τ, γτ and ϕτ capture
the task-specific productivity of humans and capital respectively, h = (hs)

′
s∈S

is a vector capturing workers’ multi-dimensional skills, rτ ≡ (rτ,s)
′
s∈S is the

skill requirement of task τ, and kτ is capital devoted to task τ. If the task is
automatable, capital and labor are perfect substitutes.

The function f (·) determines how workers with different skills h are differ-
entially productive in tasks depending on its skill requirements, rτ. Intuitively,
this function captures how workers’ productivity depends on the “match” be-
tween their skills and the skills required to complete the task (Lise and Postel-
Vinay, 2020; Baley et al., 2022). For our quantification, we will assume a func-
tional form for f (·) (in section 2.4, equation 14) and show how its parameters
can be identified and estimated.
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Technical change. We consider three different ways in which technical change
affects the task-level production function:

Augmentation Enhancing human productivity, increasing γτ;
Automation Substituting labor with capital, expanding Aj;
Simplification Simplifying tasks for humans, reducing rτ.

The first two are standard in the task-based literature (e.g., Acemoglu and Au-
tor, 2011). We introduce simplification to allow for heterogeneity in technolo-
gies’ impact on productivity depending on workers’ skills.5

Experimental evidence has shown that AI’s productivity effects tend to be
stronger for less skilled workers, suggesting that simplification can be an im-
portant force in practice (e.g., Brynjolfsson et al., 2025b).

The firm’s problem. Each good j is produced by a representative firm that
takes the equilibrium wage {wj(h)}h and the costs of capital R as given. The
firm chooses how many workers of each skill level h to hire, how to allocate
their time across tasks and how much capital to use for each task. Formally, the
firm solves the following profit maximization problem:

max
{nj(h), ℓj,τ(h), kj,τ(h)}

∫
nj(h)

pjYj(h)− wj(h)− R ∑
τ∈Aj

k j,τ(h)

 dh

s.t. Yj(h) =

 ∑
τ∈Tj

θ
1
ρ

j,τ ỹτ(h)
ρ−1

ρ


ρ

ρ−1

∑
τ∈Tj

ℓj,τ(h) = 1 ∀h

ỹτ(h) ≡ yτ(h, ℓj,τ(h), k j,τ(h)) given by (2),

(3)

where nj(h) is the amount of labor employed with skill h, ℓj,τ(h) is the share
of time allocated to task τ, and k j,τ(h) denotes the capital per worker allocated
to workers with skill h working on task τ. Because the marginal product of
capital depends on a worker’s skills, the firm generally does not allocate an
equal amount of capital to each worker.

Since the labor market is perfectly competitive the worker’s wage must equal

5While we call this technical change “simplification”, the methodology equally allows for
increases in skill requirements (or “complication”).
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their marginal product. That is,

wj(h) = pjYj(h)− R ∑
τ∈Aj

k j,τ(h). (4)

A worker’s wage thus depends on the allocation of their time and capital to the
various tasks in the occupation. If the worker only cares about the allocation
in so far as it affects the wage, the worker and firm would always agree that
the allocation should maximize the worker’s value added. However, when the
allocation also affects future payoffs (such as through skill accumulation, as in
this model) the worker would in principle be willing to accept a lower wage in
exchange for an allocation that yields higher future payoffs (through increased
learning). To rule out such an exchange, we make the following assumption.

Assumption 1 (Task assignment: control and contractibility). The firm con-
trols the workers’ allocation of time across tasks and this allocation is not con-
tractible.

Assumption 1 implies that the firm chooses the allocation that maximizes
profits (output net of capital costs) for any given wage wj(h). In equilibrium,
firms thus choose this value-added maximizing allocation and wages equal the
worker’s marginal product given this allocation.

A second assumption is that automatable tasks are cheaper to perform with
capital than with labor, ensuring the worker’s time is only allocated to non-
automatable tasks.

Assumption 2 (Full automation of automatable tasks). The unit cost of produc-
ing a task with capital is lower than the cost of producing it with labor for all
occupations, tasks, and skills. That is, for all occupations j, skills h, and tasks
τ ∈ Aj,

wj(h)
γτ f (h, rτ)

>
R
ϕτ

.

Optimal time allocation. Assumption 1 and 2 together imply that a worker’s
time is allocated non-automatable tasks so as to maximize the production of
these tasks. That is, the firm solves the following time allocation problem:

{
ℓj,τ(h)

}
τ∈Nj

= arg max
{ℓτ}τ∈Nj

 ∑
τ∈Nj

θ
1
ρ

j,τ (ℓτγτ f (h, rτ))
ρ−1

ρ


ρ

ρ−1

s.t. ∑
τ∈Nj

ℓτ = 1.
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The solution to this problem for a given task τ ∈ Nj is

ℓj,τ(h) =
θj,τγ

ρ−1
τ f (h, rτ)ρ−1

∑κ∈Nj
θj,κγ

ρ−1
κ f (h, rκ)ρ−1

, (5)

which shows that more time is spent on tasks with greater weight θj,τ. If tasks
are substitutes (ρ > 1) a worker’s time is allocated to the most productive tasks,
i.e., tasks for which γτ f (h, rτ) is greater. If instead tasks are complements (ρ <

1), workers spend more time on the less productive tasks.

Optimal capital allocation. In choosing how much capital to allocate to each
worker-task pair, the firm balances the marginal benefit of increased output
against the cost of capital. The first order condition implies that for all tasks
τ ∈ Aj

k j,τ (h) = θj,τϕ
ρ−1
τ Yj (h)

(
pj

R

)ρ

, (6)

where Yj (h) is the profit-maximizing level of output when a worker with skill
vector h works in occupation j. Clearly, the lower the cost of capital relative
to the price of the output, the more capital the firm uses. Also, firms allocate
more task-automating capital to workers that are more productive in the non-
automated tasks, i.e., workers for which Yj(h) is larger.

Occupational productivity. Given the optimal allocation of time and automa-
tion technology to the production of tasks, the output per worker of type h is

Yj (h) ≡

 ∑
τ∈Aj

θ
1
ρ

j,τ(ϕτk j,τ(h))
ρ−1

ρ + ∑
τ∈Nj

θ
1
ρ

j,τ
(
ℓj,τ(h)γτ f (h, rτ)

) ρ−1
ρ


ρ

ρ−1

= Γ
ρ

1−ρ

j

 ∑
τ∈Nj

θj,τγ
ρ−1
τ f (h, rτ)

ρ−1

 1
ρ−1

(7)

where

Γj = 1 − ∑
τ∈Aj

θj,τ

(
R/ϕτ

pj

)1−ρ

is the labor share in occupation j. Equation (7) thus shows that a worker’s
output in occupation j is a function of their productivity in the non-automated
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tasks τ ∈ Nj.

Wages. Combining equation (4) and (7) yields the wage when a worker of
skill h chooses occupation j:

wj(h) = pjYj(h)Γj = pj Γ
1

1−ρ

j

 ∑
τ∈Nj

θj,τγ
ρ−1
τ f (h, rτ)

ρ−1

 1
ρ−1

. (8)

Equation (8) shows that if none of the tasks are automatable, i.e. Aj = ∅ and
Γj = 1, a worker’s income equals total revenue wj(h) = pjYj(h).

Skill accumulation. Before entering the labor market at age a = 1, each worker
draws an initial skill vector h1 after which they accumulate further skills on the
job. We assume that a worker’s human capital accumulation depends on their
current skills, their “ability to learn” ψ, and the skill requirements of the tasks
in job j: h′ = gj(h, ψ).

Occupational choice. Every period, each worker chooses from a discrete set
of occupations to maximize utility. Workers consume their income each period
and live for A periods. Their expected lifetime utility at age a when their previ-
ous occupation is k is represented by the value function

Va(h, ψ, k) = E

[
max

j
log wj(h) + log ε j + µj − κ(k, j) + βVa+1

(
gj (h, ψ) , ψ, j

)]
(9)

where E[·] is the expectation over occupation-specific productivity shocks. The
value after the terminal age A is zero, VA+1(·, ·) = 0. µj is the amenity value
of occupation j. gj (h, ·) is next period’s human capital when choosing occupa-
tion j. κ(k, j) is a cost of switching from occupation k to j. In our quantitative
application, we set this to κ(k, j) = κ1[j ̸= k] for some constant κ.6

We assume that the log productivity shocks log ε j follow a type I generalized
extreme value (Gumbel) distribution with mean 0 and scale parameter ζ.7 This
assumption implies that the conditional probability of choosing occupation j

6We assume that occupational switching costs do not apply in the first period.
7The CDF is Pr(log ε < x) = exp

(
− exp

(
− x+ζγ

ζ

))
where γ ≈ 0.577 is Euler’s constant.

This implies that ε j follows a Fréchet distribution.
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has the closed-form solution

Pa(j | h, ψ, k) =
exp

(
1
ζ

(
log wj(h) + µj − κ(k, j) + βVa+1

(
gj (h, ψ) , ψ, j

)))
∑J

l=1 exp
(

1
ζ (log wl(h) + µl − κ(k, l) + βVa+1 (gl (h, ψ) , ψ, l))

)
(10)

so that the value function in (9) can be simplified to

Va(h, ψ, k) = ζ log
J

∑
j=1

exp
(

1
ζ

(
log wj(h) + µj − κ(k, j) + βVa+1

(
gj (h, ψ) , ψ, j

)))
(11)

Since VA+1(·, ·) = 0, equation (11) solves the value function, and thus the oc-
cupational choice problem, by backward iteration from age A to 1 for a given
sequence of prices.8 Note that we have suppressed any dependence on time in
the model above. In principle, prices vary over time, so that the wage schedule
wj,t(h), and thus the value functions, are time-dependent.

2.2 Equilibrium

The price of each occupational good pj is determined in equilibrium through
demand and supply. The supply is characterized by the solution to the worker’s
problem. The workers, in turn, consume and generate demand for the occupa-
tional goods. We assume that demand is characterized by a homothetic and
invertible demand function D

(
{pj}J

j=1

)
that maps prices pj into relative de-

mand for each occupational good. In our application, we use CES demand.
Having specified demand, we can now define the competitive equilibrium.

Definition (Competitive equilibrium). Given an initial joint distribution of age,
human capital, ability, and occupations, Ga,t(h, ψ, k), a distribution of human
capital at birth G1,t(h, ψ), and the supply of capital {Kt}∞

t=1, a competitive equi-
librium is defined as a sequence of prices

{
p1,t, · · · , pJ,t, Rt

}∞
t=1 such that

– Workers’ occupational choices maximize the present value of lifetime util-
ity given the sequence of prices. That is, their occupational choice proba-
bilities are as in equation (10);

8Equation (7) solves for wages wj(h) given prices.
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– The distribution over states follows from occupational choices:

Ga+1,t+1
(
h′, ψ, j

)
=

J

∑
k=1

∫
gj(h′,ψ)≤h

Pa,t (j | h, ψ, k) dGa,t (h, ψ, k) ; (12)

– Demand for goods equals supply: D({pj,t}J
j=1) ∝ Yj,t, where

Yj,t ≡
A

∑
a=1

J

∑
k=1

∫
Yj(h)Pa,t(j | h, ψ, k)E[ε j | j, h, ψ, k] dGa,t(h, ψ, k); 9 (13)

– Demand for capital equals supply:

Kt =
A

∑
a=1

J

∑
j=1

∑
τ∈Aj

∫
k j,τ(h)Pa,t (j | h, ψ, k) dGa,t (h, ψ, k) .

2.3 Solution Methods

We provide algorithms to solve for a stationary competitive equilibrium as well
as the transition path after an unexpected one-off technological shock.

Stationary equilibrium. To solve for a stationary equilibrium, we use the fol-
lowing algorithm:

1. Guess an initial vector of relative prices
(

p(1)1 , · · · , p(1)J

)
.

2. For iteration r, given the prices
(

p(r)1 , · · · , p(r)J

)
, solve the worker’s prob-

lem and compute the implied output of each good
(
Y (r)

1 , · · · ,Y (r)
J

)
. Then,

update prices to clear the market given supply: p(r+1) = D−1
(
{Y (r)

j }J
j=1

)
.

3. Repeat step 2 until
∥∥∥p(r+1) − p(r)

∥∥∥ < ϵ for a threshold ϵ > 0.

Transition path. Starting from the initial stationary equilibrium, we solve for
the transition path of prices

{
p1,t, · · · , pJ,t

}∞
t=1 from the moment the shock is

realized. We numerically approximate this infinite sequence by solving for

9E[ε j | j, h, ψ, k] is the expectation of the productivity shock conditional on choosing oc-
cupation j when your states were h, ψ, k. The Gumbel distribution of log ε j implies that this
expectation has a closed-form solution: E[ε j | j, h, ψ, k] = exp(−ζγ)Γ(1 − ζ)Pa,t(j | h, ψ, k)−ζ .
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{
p1,t, · · · , pJ,t

}T
t=1 for a large enough T such that prices are constant after pe-

riod T. The solution algorithm is based on (Boppart et al., 2018):

1. Compute the stationary equilibrium before (t = 0) and after the change
(t = T).

2. Guess a path for the sequence of prices.10

3. For iteration r, given the sequence of prices
{

p(r)1,t , · · · , p(r)J,t

}T

t=1
, solve for

the value function at t = T, T − 1, . . . , 1. Then, compute the implied
output of each good at each time and the corresponding prices p(r+1)

t =

D−1
(
{Y (r)

j,t }
J
j=1

)
for t = 1, . . . , T.

4. Repeat step 3 until
∥∥∥p(r+1)

t − p(r)
t

∥∥∥ < ϵ ∀t = 1, . . . , T for a threshold ϵ > 0.

Computing implied output given the sequence of prices is the main compu-
tational challenge in these algorithms. It consists of three main steps on which
we provide more detail below.

First, we solve for the value function. This step is conceptually straightfor-
ward. However, when skills are multi-dimensional and there are many occu-
pations j, the state space (h, ψ, j) is large and value function iteration costly. We
exploit a convenient feature of the logit to provide relief. Since the occupational
switching cost is κ(j, k) = κ1[j ̸= k], the value function in equation (11) can be
written as

Va(h, ψ, k) = ζ log

[
e−

κ
ζ

J

∑
j=1

Ṽ j
a (h, ψ) +

(
1 − e−

κ
ζ

)
Ṽk

a (h, ψ)

]

where Ṽ j
a (h, ψ) ≡ exp

(
1
ζ

(
log wj(h) + µj + βVa+1

(
gj (h, ψ) , ψ, j

)))
. This so-

lution implies that it is sufficient to solve for Ṽ j
a (h, ψ). Using this property, we

effectively shrink the state space in the value function iteration step by a factor J
(in our exercise, J = 93). Conditional choice probabilities can then be recovered
as

Pa(j | h, ψ, k) =
Ṽ j

a (h, ψ) e−
κ
ζ 1[j ̸=k]

e−
κ
ζ ∑J

j=1 Ṽ j
a (h, ψ) +

(
1 − e−

κ
ζ

)
Ṽk

a (h, ψ)
.

10A reasonable guess is the path where prices adjust immediately to the new stationary equi-
librium.
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Second, after computing the value function and conditional choice proba-
bilities, we compute the joint distribution of age a, human capital h, learning
ability ψ, and occupations k using the law of motion in equation (12). We do so
by simulation. That is, we first draw from the initial distribution of skills and
learning ability at age a = 1. Their states imply a conditional probability to
choose each occupation. We then draw occupational choices randomly based
on these probabilities to obtain the distribution at age a = 2. We iterate this
process forward until a = A.11

Third, to obtain an update for the relative prices, we compute total implied
production of each good given the previous price iteration. The previous steps
yield a sample of workers with a given occupation and set of skills. From there,
we approximate the integral in equation (13) for each occupation j. That is,
we evaluate the term Yj(h)Pa,t(j | h, ψ, k)E[ε j | j, h, ψ, k] for each worker-age
and for each j = 1, . . . , J. In other words, we do not condition on the occu-
pational draw in the computation of production so that sampling noise only
affects workers’ states, not production conditional on those states.

2.4 Parametrization

In our quantitative application, we make assumptions on the functions that
govern task-level productivity and human capital accumulation.

Production. We specify the task-level production function as

f (h, rτ) = ∏
s∈S

hωs
s exp

(
−η min {hs − rτ,s, 0}2

)
. (14)

This production function is similar to that proposed by (Lise and Postel-Vinay,
2020). The first term in equation (14) reflects a force that makes workers with
higher skills more productive in any task, independent of its skill requirements.
The second term captures the degree to which the worker’s productivity is di-
minished when performing tasks for which they are “underqualified”. Figure
A.1a shows the functional form graphically.

11To save computational costs at early price iterations, we begin with a small number of
simulations, and increase sample sizes as the difference between subsequent price iterations
decrease.
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This functional form assumption implies that the wage function in (4) equals

wj(h) = pjΓ
1

1−ρ

j ∏
s∈S

hωs
s

 ∑
τ∈Nj

θj,τγ
ρ−1
τ exp

(
−η ∑

s∈S
min {hs − rτ,s, 0}2

)ρ−1
 1

ρ−1

.

(15)

Skill accumulation. We assume that the human capital accumulation func-
tion has the following functional form:

gj,s(h, ψ) = (1 − δ)hs + ∑
τ∈Nj

ℓj,τ(h)max {rτ,s − hs, 0} e−λ(ψ)max{rτ,s−hs,0}. (16)

where ℓj,τ(h) indicates workers’ time spent on task τ, defined in equation (5).
Equation (16) has several intuitive implications for skill accumulation. First,
workers’ learning is most affected by the tasks they spent most time on, i.e.,
for which ℓj,τ(h) is greatest. Second, workers learn by performing tasks that
are “hard” for them, i.e., tasks that have skill requirements above their current
skill levels. However, workers learn most from tasks that are not “too hard”.
As tasks become harder relative to the workers’ skill, the rate at which skills
catch up decreases; λ(ψ) ≥ 0 governs the rate of this slowdown. Figure A.1b
illustrates how learning varies with the distance between the worker’s skills
and the task’s requirements.12 Similar to Heckman et al. (1998), we allow for
workers to differ in their ability to learn ψ. Lastly, some skill depreciation occurs
independently of which tasks are performed, governed by δ.

3 Data

We use three main data sources to estimate the model’s parameters. First, we
rely on O*NET to measure each occupations’ tasks and skill requirements. Sec-
ond, we provide and validate a new database of task-level skill requirements by
extending O*NET’s occupation-level survey on skill requirements to the task-
level using large language models. Third, we use panel data on wages, occupa-
tional choices, and multidimensional skills from the NLSY79.

For the application of our methodology to artificial intelligence, we also re-

12Since f (x) = x exp(−λx) is strictly increasing for x < 1
λ and strictly decreasing after,

learning from task τ is maximized when rτ,s − hs = 1/λ, yielding a learning gain of 1/ (eλ).
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quire data on AI’s task capabilities. We follow the literature in using large lan-
guage models to estimate these capabilities (e.g., Eloundou et al., 2024; Ace-
moglu, 2025).

3.1 Estimation Data

3.1.1 Occupations and Tasks (O*NET)

O*NET is the leading database on occupations, tasks, and skills in the US econ-
omy (e.g., Autor et al., 2003; Acemoglu and Autor, 2011; Lise and Postel-Vinay,
2020). O*NET contains detailed descriptions of 19,530 tasks linked to 974 oc-
cupations. We rely on these data to define both the occupations and tasks in
our model. That is, we set the tasks employed across occupations in our model,
Tj, to mirror those in the O*NET data. We set the weights of each task τ in an
occupation, θj,τ, to the importance measure of that task as reported in O*NET.13

We also use O*NET’s definition of worker skills across 35 dimensions (e.g.,
“reading comprehension” or “social perceptiveness”). O*NET rates skills on a
scale from 1 to 7 and provides anchors for each level (e.g., level 2 in reading
comprehension means being able to “read step-by-step instructions for com-
pleting a form” and 4 to “understand an email from management describing
new personnel policies”).14

We reduce O*NET’s dimensions into five skill categories: manual, mathe-
matics, social, technical, and verbal.15 Table B.1 shows this mapping. Each
skill’s requirements equal the average of its related O*NET skills.

3.1.2 Task-level Skill Requirements

Workers’ comparative advantage in a task is governed by the match between
their skills and the task’s skill requirements, rτ. While O*NET provides data
on occupation-level skill requirements, it lacks task-specific data. To address
this gap, we use OpenAI’s GPT-4o to estimate the task-level skill requirements.
To ensure consistency with O*NET and a valid survey design, we replicate
O*NET’s occupation-level questionnaire on the level of the task, by using their

13The importance weights are normalized to sum to 1 within occupations.
14The original O*NET questionnaire and skill level descriptions are available here.
15Relative to Addison et al. (2020); Baley et al. (2022); DeLoach et al. (2022), we include man-

ual as a separate skills because we believe its interaction with AI is of particular interest.

16

https://web.archive.org/web/20250214140247/https://www.onetcenter.org/dl_files/MS_Word/Skills.pdf


questionnaire format, skill dimensions, and skill anchors. This process covered
19,530 task descriptions across 35 skills using 683,550 queries. See Appendix
D.1 for further prompt design details.

We validate our data by comparing aggregations of our newly generated
task-level data with O*NET’s occupation-level measures. For each occupa-
tion, we calculate importance-weighted average task-level skill requirements
(∑τ∈Tj

θj,τrτ,s) and compare these with corresponding O*NET values. The five
aggregated skills have high agreement rates, with correlations ranging from
0.82 to 0.93 (see Figure A.2).16

3.1.3 Skills, Occupational Choice, and Wages (NLSY79)

We use data from the NLSY79 to estimate the task-level production function
and the skill accumulation function. The data contain information on wages,
occupations, and multi-dimensional skill assessment scores.

We follow the literature in measuring skills in the NLSY79. As Addison et al.
(2020); Baley et al. (2022), we measure skills with the Armed Services Vocational
Aptitude Battery (ASVAB): manual skills are measured as the average of scores
on auto and shop information and mechanical comprehension, math skills are based
on mathematics knowledge and arithmetic reasoning scores; technical skills on gen-
eral science and electronics information; verbal skills on paragraph comprehension
and word knowledge.17 We standardize each of the subscores before aggregat-
ing. For social skills, we use a composite measure of self-reported sociability
as a young adult, sociability at age 6, the Rotter Locus of Control Scale, and the
Rosenberg Self-Esteem Scale (see also Deming, 2017; Addison et al., 2020; Guve-
nen et al., 2020).

These data only provide an ordinal measure of skills. That is, we only ob-
serve h̃ = F(h) where F(·) is the distribution function of the initial skill distri-
bution. We do not directly observe the cardinal measure h that is on the same
scale as the skill requirements. We therefore estimate the marginal distribution
of skills together with all other parameters (see section 4).

We follow the NLSY79 cohort’s labor market history from age 25 to the sur-
vey in 2022. We retain information on all jobs held, including their start and

16Agreement rates are also high across most of the 35 original O*NET skill dimensions (see
Figure A.3).

17Relative to Addison et al. (2020) and Baley et al. (2022), we add manual skills as a separate
dimension.
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end dates, the occupational code, the hourly wage, and the number of hours
worked per week. Similar to Lise and Postel-Vinay (2020), we only consider
workers for which the maximum gap between observed jobs is no larger than
18 months. We collapse this data to a worker panel of yearly frequency.

3.2 Data on AI’s Capabilities

In the model presented in section 2, AI’s capabilities can take three forms: aug-
mentation, automation, and simplification. Below we describe how we estimate
these capabilities by task. We acknowledge that there is substantial uncertainty
surrounding these capabilities. However, we view these estimates as reason-
able and provide evidence to that effect. As our baseline, we only consider the
effects of generative AI (data summarized in Table B.3).18 However, we also
consider smart robots and autonomous vehicles in an alternative scenario.19

Automation. We also follow Eloundou et al. (2024) by eliciting automatability
by task from large language models. That is, we ask for each task in the O*NET
database whether AI can complete the task autonomously. From the perspec-
tive of the model, we view this as asking whether a task τ is in the automat-
able set Aj. Eloundou et al. (2024) classify tasks as having either “no”, “low”,
“moderate”, “high” or “full” exposure to automation.20 We classify a task as
“automatable” if it has high or full automation exposure, which is restricted to
cases where the LLM indicates that generative AI can complete at least 90% of
the components of the tasks. 22.2% of all tasks are classified as automatable by
generative AI (see Table B.3). The prompt is documented in Appendix D.2.2.

We find high agreement rates between our measures and those obtained by
Eloundou et al. (2024). The share of tasks that are automatable is almost identi-
cal across the measures. Importantly for our exercise, we find strong agreement
on the share of automated tasks by occupation (ρ = 0.82, see Figure A.4b). Table
B.2 shows that agreement is also strong on the task-level.

Augmentation. In measuring AI’s potential to augment human productivity,
we follow Eloundou et al. (2024) who asked human raters and OpenAI’s GPT-4
whether they believed that LLMs can reduce the time required to complete a

18We use Gartner’s definition which can be found here.
19For definitions of these technologies, we again follow Gartner: see here and here.
20The specific prompt is documented in (Eloundou et al., 2024, Supplementary Materials).
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task by at least half. We replicate their exercise with GPT-4o, except that we
asked for a continuous estimate of the percentage of time saved rather than a
binary measure and consider generative AI more broadly. On average, we esti-
mate that generative AI saves 20.2% of worker time (see Table B.3). Appendix
D.2.1 describes our prompt design. The prompt also describes how we extend
it to smart robots and autonomous vehicles.

We validate our new data on task-level AI augmentation in two ways. First,
we find that our estimates are strongly correlated with both the human rated
and GPT-4 rated data from Eloundou et al. (2024), especially considering that
their measures are binary (see Figure A.4a). Second, we compiled experimental
estimates of average productivity effects of generative AI in various tasks and
occupations and compared them with our estimates (see Table B.4). Reassur-
ingly, our estimates closely approximate those experimental estimates.

From the perspective of the model, average productivity effects are driven
both by augmentation, governed by γτ, and simplification, changes in task’s
skill requirements (see below). To estimate augmentation based on average
productivity effects, we first compute the average productivity effects resulting
from simplification alone based on the change in skill requirements and the pre-
AI distribution of skills by occupation. We set augmentation γτ to the average
productivity effect net of this simplification-led productivity effect.

Simplification. Lastly, we elicit the degree to which AI changes tasks’ skill
requirements, rτ. In addition to our new data on pre-AI task-level skill require-
ments, we prompt GPT-4o to evaluate the task’s skill requirements before and
after workers gain access to generative AI. The prompt can be found in Ap-
pendix D.2.3. We estimate that across all tasks and skill dimensions, the av-
erage required level falls by 18.3% once workers get access to generative AI
(based on O*NET’s 7-step scale, see Table B.3). A one-step reduction (out of
7) is the most common change. We cannot directly validate the accuracy of
these predicted changes. However, we do find that the predicted pre-AI skill
requirements strongly correlate (ρ = 0.86) with those resulting from the prompt
to elicit task-level skill requirements in section 3.1.2, which contained no refer-
ence to AI (internal consistency).

AI capabilities across occupations and skills. The degree to which an occu-
pation is affected by these three channels is positively correlated. Automatabil-
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ity is highly correlated with augmentation (ρ = 0.89). Occupational tasks expe-
riencing strong augmentation also see the greatest skill requirement reductions
(ρ = 0.90).

There is large heterogeneity in what AI can simplify across skills: the strongest
simplification occurs in time management, writing, judgment and decision mak-
ing, and critical thinking, versus the least simplification in the manual skills of
equipment maintenance, repairing, and installation.

Lastly, we find that augmentation and simplification are most common for
tasks with initially high skill requirements. Automation is less correlated with
skill requirements: if anything, the middle-skilled tasks are most prone to au-
tomation (see Figure A.5).

4 Estimation

We jointly estimate the parameters governing productivity, skill accumulation,
occupational choices, and the initial skill distribution. We provide a computa-
tionally efficient methodology to do so using direct inference on the NLSY79 es-
timation sample. Importantly, it recovers the equilibrium prices directly, avoid-
ing the need to solve for the equilibrium within the estimation loop. Table B.5
shows an overview of all model parameters and their estimated values. In this
section, we discuss the procedure in detail.

4.1 Estimation strategy

The goal of the estimation strategy is to find the parameters that maximize the
likelihood of the observed wages and occupational choices. Relative to a full
maximum likelihood approach, we reduce the computational burden in two
main ways. First, we use a sequential approach. That is, we maximize the
likelihood

L
(
θ1, θy(θ1), p(θ1), µ(θ1)

)
with respect to θ1, where θy = {η, {ωs}s∈S} are task-level productivity param-
eters, p = {pj}J

j=1 are equilibrium prices, and µ = {µj}J
j=1 are occupational

amenities. We show how to obtain consistent estimates of θy(θ1), p(θ1), and
µ(θ1) using closed forms and fast iterative algorithms for a given θ1. This re-
duces the number of parameters over which to maximize the likelihood fully
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non-linearly by 95%, cutting the computational cost dramatically. Second, we
only maximize the likelihood of the old population’s occupational choices (for
whom the problem is static), avoiding repeated solution of the dynamic value
function.

Inner algorithm. The first step in the inner algorithm is to compute the work-
ers’ skills given θ1. The NLSY79 provides multi-dimensional skill scores. How-
ever, we observe those skills i) only as percentile scores, not as cardinal mea-
sures, and ii) only at labor market entry, not later. We first map percentile scores
into cardinal skills h using the marginal distribution, approximated with a Beta
distribution with parameters in θ1.21 We then successively apply the skill accu-
mulation function gj(·, ψ) in equation (16) to infer workers’ skills at later ages.
That is, given worker i’s occupational history ja−1

i ≡ {ji,1, . . . , ji,a−1}, worker i’s
skill level at age a is

hi,a(λ(ψi), δ) ≡
(

gji,a−1(·, ψi) ◦ gji,a−2(·, ψi) ◦ . . . ◦ gji,1(·, ψi)
)
(hi,1) .

where ( f ◦ g)(x) ≡ f (g(x)).22 Following Heckman et al. (1998), we proxy ψi by
the Armed Forces Qualification Test (AFQT) score. The parameters {λ(ψ)}4

ψ=1

and δ are in θ1.

We estimate the occupational wage functions using a simple linear regres-
sion given workers’ skills. The derived occupational wage function in equation
(15) governs how skills translate into earnings in each occupation depending on
the prices, the occupation’s tasks, and the parameters of the production func-
tion {ωs}s∈S and η. A log-linearization of this function (around no mismatch)
implies that

log wj(hia) ≈ log pj + ∑
s∈S

ws log(his)− η ∑
s∈S

∑
τ∈Tj

θ̃j,τ min {his − rτ,s, 0}2
(17)

where θ̃j,τ ≡ θj,τγ
ρ−1
τ (see Appendix C.2 for the proof).23 Equation (17) shows

that we can estimate the equilibrium prices pj and the parameters of the pro-

21The Beta distribution is a flexible distribution characterized by two parameters Ba and Bb
with support on [0,1]. We assume that this distribution is common across skill dimensions.

22To save notation, it is left implicit above that hi,a depends on λ(ψi) and δ through gj(·, ψi).
23For estimation, we assume that ∑τ∈Tj

θ̃j,τ = 1 for all j = 1, . . . , J and that O*NET’s task-

importance weights capture θ̃j,τ . Also, since we estimate the model on data before the change
of interest, the equation above reflects wages when no task is automated, i.e., Aj = ∅.
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duction function using a simple OLS regression of wages on occupational fixed
effects, skills, and skill mismatch. We use a control function approach to correct
for selection on the productivity shocks ε j (Dubin and McFadden, 1984).24

Given the wage function, we estimate the occupational amenities µ using a
fast iterative procedure. The worker’s occupational choice problem is static at
the terminal age since their choice probabilities no longer reflect occupations’
differential learning value. That is, for a = A, equation (10) simplifies to

PA(j | h, ψ, k) =
exp

(
1
ζ

(
log wj(h) + µj − κ(k, j)

))
∑J

l=1 exp
(

1
ζ (log wl(h) + µl − κ(k, l))

) . (18)

where ζ (scale of productivity shocks), κ (switching costs) are in θ1 and thus
taken as given in this step. The likelihood is maximized with respect to µ when
the observed share of workers in each occupation j, sj, equal the model-implied
share, s̃j (µ). We solve for this µ using the contraction mapping proposed by
Berry et al. (1995):

µ
(r+1)
j = µ

(r)
j + Ψ

(
ln(sj)− ln

(
s̃j (µ)

))
for some Ψ ∈ (0, 1] (19)

where Ψ is a damping parameter. In practice, we use the SQUAREM algorithm
to accelerate convergence (Varadhan and Roland, 2008; Reynaerts et al., 2012;
Conlon and Gortmaker, 2020).

Outer algorithm. In the outer algorithm, we optimize over the remaining pa-
rameters governing skill accumulation function, occupational choices, and ini-
tial skills. We choose these parameters to maximize the joint likelihood of the
wage function and the occupational choices (of the old population). That is,

θ̂1 = arg max
θ1

N

∑
i=1

A

∑
a=1

J

∑
j=1

1[ji,a = j] log π
(
log wi,a,j − log w̃i,a,j(θ1)

)
+

N

∑
i=1

J

∑
j=1

1[ji,A = j] log PA(j | hi,A, ψi, ki; θ1)

(20)

where w̃i,a,j(θ1) is the expected wage based on the inner-step given θ1.

24Due to non-random occupational choice, the expected value of log ε j conditional on choos-
ing j is −ζ log Pa(j | h, ψ, k). We control for this term in the regression. We estimate the proba-
bilities using occupation-specific logit regressions that condition on workers’ previous occupa-
tion, 10-year age bins, and each dimension of their initial skill.
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In the model, the choice-relevant shocks log ε j are Gumbel. To allow for ad-
ditional choice-irrelevant wage noise (measurement error, idiosyncratic pay), we
add an independent term νj so that the total wage shock is log ϵj ≡ log ε j +

log νj. We take log νj to be Gaussian and approximate log ϵj, and thus the den-
sity function π(·), by a normal distribution.25

In a final step, we estimate the occupational amenities µ using the full pop-
ulation of workers taking all other parameters and estimated prices as given.
Within the inner algorithm of the main estimation procedure, we only use the
old population to avoid having to solve for the value function within the es-
timation routine. To match employment shares for the whole working pop-
ulation, we run an analogous BLP-procedure on the full population, solving
the worker’s dynamic problem for each iteration.26 The estimates of the oc-
cupational amenities resulting from the inner algorithm and this dynamic BLP
procedure are almost identical (correlation: 0.99).

Estimation results. Table 1 shows the results of the estimation of the produc-
tion function in equation (17). The first five columns show the degree which
various skills increase productivity across all skills. We find that the returns to
math and social skills are highest, consistent with Deming (2017). Importantly,
we also find that the cost of underqualification is substantial, yielding strong
comparative advantage across tasks with different skill requirements. The co-
efficient on η implies that if a worker’s skill is one level below the task’s skill
requirement (on O*NET’s 1 to 7 scale) in one of the skill dimensions, their task-
specific productivity is around 4.4% lower than that in tasks for which they
meet the skill requirements in every dimension.

25Strictly speaking, the sum is not Gaussian and the distribution becomes a convolution.
However, given that we find that the variance of the choice-irrelevant shocks is considerably
larger than that of log ε j, the impact of this simplification is minimal.

26In dynamic problems, this procedure is not generally a contraction mapping and we can
thus not prove that the fixed point is unique (see also Gowrisankaran and Rysman, 2012). How-
ever, the procedure yields the same results for any starting value we tried.
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TABLE 1: PRODUCTION FUNCTION: PARAMETER ESTIMATES

General skill Mismatch

ωMn ωMt ωS ωT ωV η

0.330 0.786 0.545 0.220 0.361 0.044
(0.024) (0.028) (0.021) (0.038) (0.031) (0.002)

Notes: This table shows estimates of the task-level productivity parameters. Subscripts Mn,
Mt, S, T, V refer to manual, math, social, technical, and verbal, respectively. Estimates are
obtained through OLS based on equation (17). Standard errors in parentheses (not corrected
for uncertainty in other parameters).

The occupational prices are recovered from the occupational fixed effects in
the production function regression. Consistent with the model, the estimated
occupational prices p̂j are strongly correlated with the skill requirements in the
respective occupations: skill requirements explain around 73% of the variance
in prices across occupations (see Table B.6).

We show estimates of the parameters that determine initial skills and skill
accumulation in Table 2. The depreciation rate of human capital when doing
work for which one is overqualified is 0.0003. λ(ψ) is inversely related to some-
one’s ability to learn. The results in Table 2 thus suggest that the learning cost
decreases with the AFQT score. Lastly, Ba and Bb are the shape parameters of
the initial Beta distribution of skills. The implied average is Ba

Ba+Bb
= 0.35. This

translates to an average of 3.11 on the original O*NET scale from 1 to 7, in be-
tween the “low” and “medium” skill requirement levels. Figure A.6 plots the
density function.

TABLE 2: SKILLS AND SKILL ACCUMULATION: PARAMETER ESTIMATES

Learning costs Depr. Initial dist.

λ(1) λ(2) λ(3) λ(4) δ Ba Bb

3.50 2.97 2.81 2.67 0.0003 61.74 113.84

Notes: This table shows parameter estimates for the law of motion for skill accumulation in
(16) and the initial skill distribution. λ(ψ) refers to the learning cost at quartile ψ of the AFQT
distribution.

Lastly, our estimate of the scale parameter ζ̂ = 0.053 and of the switching
cost parameter κ̂ = 0.340. The estimate for κ implies that the utility cost of
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switching occupations is equivalent to a 29% wage loss.

Calibrated parameters. Some parameters are set externally. In sections 3.1.1
and 3.1.2 we explain how we measure the task set Tj, the task weights θj,τ, and
the skill requirements rτ for each occupation j and for each task τ ∈ Tj. We
set the number of periods A to 40 so that each period in the model represents
a year between ages 25 and 64. Following Keane and Wolpin (1997), we set
the discount factor β to 0.78 (see also Postel-Vinay and Robin (2002) for similar
estimates).

We set the elasticity of substitution between occupations σ to 1.57—the mid-
point between 1.81 (Burstein et al., 2019) and 1.34 (Caunedo et al., 2023)—and
the substitutability between tasks ρ to 0.49, as estimated by Humlum (2019).

Lastly, we need to calibrate the share of income that will accrue to labor in
each occupation, Γj in equation (8). In Appendix C.1, we derive how this share
is identified from the share of tasks that are automated and the average cost
savings by automated task:

Γj = 1 − ∑
τ∈Aj

θj,τ

(
R/ϕτ

pj

)1−ρ

=
χρ−1

(
1 − ∑τ∈Aj

θj,τ

)
∑τ∈Aj

θj,τ + χρ−1
(

1 − ∑τ∈Aj
θj,τ

) . (21)

where χ is the unit cost of producing tasks with AI relative to the unit cost of
producing it with labor. Using experimental evidence, Acemoglu (2025) esti-
mates the cost savings of AI in automatable tasks to be 27%. Hence, we set
χ = 0.73.

Demand for occupations. Lastly, we estimate the demand for occupations.27

We assume that occupational goods are substituted with a constant elasticity of
substitution (CES) σ. Formally, demand for occupation j, Dj({pj}j=1) ∝ αj p−σ

j
where αj is the CES weight of occupation j. This demand system implies that,
for two occupations i and j,

αi

αj
=

(
pi

pj

)σ−1

× Wage share of occupation i
Wage share of occupation j

.

27Note that we estimate all supply-side parameters independently of demand. This is an
advantage as it allows to change the demand structure without having to re-estimate any other
parameters.
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We compute occupational wage shares from the 2018 BLS Occupational Em-
ployment and Wage Statistics (OEWS). The occupational fixed effects in equa-
tion (17) are consistent estimates of the (log) occupational prices.28 From those
estimates, we can compute the implied weights {αj}J

j=1 for a given σ.

4.2 Model Fit

The model’s steady state moments fit labor market data well. The model’s mo-
ments are computed from a simulated sample of 100,000 workers living in the
steady state before any technical change occurs. Figure 1 reports how well the
moments from this simulated panel match the data.

First, Figure 1a shows that the model captures the unconditional distribution
of wages reasonably well. Given that some drivers of wage inequality, such
as regional, racial, and gender differences, are omitted from the model, so it
is not surprising that inequality is somewhat underestimated. However, this
underestimation is quite limited. For instance, the ratio between the 75th and
the 25th percentile is 2.04 in the data, compared to 1.84 in the model and the top
10% wage share is 20% in the model, compared to 26% in the data. Table B.7
reports how various other measures of inequality compare between the model
and the data.

The model also accurately replicates patterns of occupational sorting. Fig-
ure 1b shows the correlation between the average skill by occupation in the
model and the NLSY79 data. To compute this correlation, we only use the oc-
cupational choices of the young population for which we observe the skills di-
rectly from the skill assessment scores.29 The correlations range between 0.6
and 0.8 across skill dimensions, implying that 1) the skill assessment scores in
the NLSY79 are predictive of occupational choices (see also Lise and Postel-
Vinay, 2020) and 2) workers in the model select into occupations based on their
skills in ways similar to that observed in the NLSY79.

Figure A.7a shows that the average wage by occupation matches the data
almost perfectly. This is the most directly targeted moment, as we estimated
demand based on occupational wage shares and job-specific amenities based
on occupational employment shares.

28To reduce noise in the price estimates, we apply empirical Bayes regression to the price
predicted by the skill requirements (see e.g., Walters, 2024).

29This makes the test as stringent as possible because it prevents the skills in each occupation
to “mechanically” reflect the skills required in the occupation through the estimated learning.
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The median wage by age also matches the pattern observed in the data. Fig-
ure A.7b shows that the model matches the growth rate of wages from labor
market entry to around age 55. However, the wage pattern in the model is not
as concave as in the data, so that growth in the first years is underestimated
and growth in the last 10 years overestimated. Furthermore, the model predicts
markedly higher wages in the first period than those directly after. This fea-
ture is caused by the fact that occupational switching costs are only incurred
after the first period. Workers are therefore more likely to choose occupations
in which they are highly productive (i.e., with a high ε j) in the first period than
in any later periods.

The model also accurately reflects the probability that a worker changes oc-
cupation from one year to another. The probability of staying within the same
3-digit occupation is 0.86 in the model and 0.90 in the CPS data. This moment is
directly targeted by the switching cost parameter κ. However, we also find that
the model fits the (untargeted) probability that a worker stays within a broader
2-digit occupational group well: 0.92 (model) and 0.94 (CPS data). In other
words, even though the occupational switching cost applies equally across all
but one occupation, the model captures that workers are more likely to stay
within a similar set of occupations.

We further compare the transition probabilities between occupations condi-
tional on switching. The correlation between the (log of) the transition prob-
abilities in the model and data is 0.56 on the 2-digit occupation level. On the
3-digit level, it is substantially lower: 0.20. In other words, the model accu-
rately predicts occupational transitions across 23 broader occupational groups.
Within those groups, occupational transitions are harder to predict, because oc-
cupations are more similar in skill requirements within those groups.
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FIGURE 1: MODEL FIT: COMPARING MODEL MOMENTS WITH DATA
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Notes: Panel A shows a kernel density plot of the wage distributions of the NLSY79 data and the
model’s steady state. Panel B reports the correlation between the average skill by occupation in
the model’s first period and the NLSY79.

5 Artificial Intelligence and the Labor Market

This section applies our model to understand how AI affects labor markets. We
consider AI-induced augmentation, automation, and simplification and study
its general equilibrium effects on wages, wage inequality, welfare, skill returns,
and occupations.

5.1 AI’s Effect on Wages and Inequality

We begin by studying AI’s impact on the steady state wage distribution. Figure
2 shows sizable average wage gains of 21%. These gains are concentrated at the
bottom of the distribution and are nearly zero at the 99th percentile.
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FIGURE 2: WAGE EFFECTS ACROSS THE DISTRIBUTION

Baseline

Without simplification

μ = 21%

-10

0

10

20

30

40

50

A
I's

 ef
fe

ct
 o

n 
w

ag
e (

%
)

1 10 20 30 40 50 60 70 80 90 99
Wage percentile

Notes: This figure shows the distribution of wage changes induced by generative AI across the
wage percentile distribution. The horizontal axis represents wage percentiles weighted by pre-
AI employment, and the vertical axis shows the percentage change in wages for each percentile.
The black line shows the joint effect of AI’s augmentation, automation, and simplification on
each wage percentile. The gray line shows the effects if AI induced only augmentation and
automation, but no simplification.

To understand these distributional effects, the figure also decomposes the
technology’s impact by isolating the role of simplification. Without simplifi-
cation—that is, with only augmentation and automation operating—average
wage gains would be moderately larger, but inequality would slightly increase
rather than strongly decrease. Simplification thus emerges as AI’s key mech-
anism for reducing inequality. Average wages, in contrast, rise mainly due to
augmentation, with automation and simplification having smaller effects on
average (see also Appendix Figure A.8, which isolates each mechanism).

Simplification lowers inequality in two ways. First, it reduces wage disper-
sion within occupations by enabling lower-skilled workers to perform tasks
more productively. Second, it reduces wage differences across occupations by
making occupations with high skill requirements more accessible to less skilled
workers, reducing its relative price.

In contrast, automation and augmentation have small distributional effects.
First, within occupations, augmentation and automation affect the relative pro-
ductivity of workers with different skills only if they affect tasks that require
systematically different skills from the rest of the occupation’s tasks. In such
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cases, augmentation and automation induce an indirect form of simplification
by changing tasks’ effective weights within an occupation. However, we find
that these indirect effects are quantitatively negligible relative to direct sim-
plification. Second, across occupations, augmentation and automation can in
principle increase wage inequality by increasing the relative productivity of
high-wage occupations. However, when the elasticity of substitution across oc-
cupations is close to one—as empirical estimates suggest—such productivity
differences translate only weakly into relative wage changes.

Turning from distributional to average effects, each mechanism shapes wages
through competing theoretical forces. Simplification weakly increases produc-
tivity holding skill constant (see equation 14), but limits opportunities for learn-
ing; for AI, we find that the net effect is slightly negative (−3%). Automation
raises productivity but displaces labor with capital (Acemoglu and Restrepo,
2018); here the productivity effect dominates, raising average wages by 6%.30

Augmentation, in contrast, has an unambiguously positive theoretical effect on
wages, and we find it to be quantitatively large.

5.2 Which Workers Gain or Lose the Most?

We next examine the implications of AI for workers’ ex-ante welfare, given the
sizable effects on the wage distribution. Specifically, we compare expected wel-
fare at labor market entry, conditional on initial skills, in economies with and
without AI. We measure welfare changes using equivalent variation, measured
in terms of a permanent proportional wage increase (regardless of skill and oc-
cupation) that delivers the same welfare gain as the introduction of AI. Figure
A.9 reports the distribution of this measure, which lie between approximately
26 and 34 percent for most workers, implying sizable ex-ante welfare gains for
almost everyone. The welfare gains exceed the average wage increase because
utility is concave in income and AI disproportionately raises wages at the bot-
tom of the distribution.

Consistent with the decrease in wage inequality, we find that the ex-ante
welfare gains are largest for less skilled workers. Figure 3 shows the coefficients
of a regression of the welfare gains on initial skill levels. Workers with high
verbal skills see the smallest increases in welfare gain: a 1-point increase in

30This finding is primarily driven by the cost savings of automation, which, following Ace-
moglu (2025), we calibrate to 27%.
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verbal skills (on the O*NET scale from 1 to 7) decreases the welfare gains from
AI by 0.7%. Higher math skills, in contrast, have the least negative association
with AI-induced welfare effects.

FIGURE 3: HOW AI’S WELFARE EFFECTS DIFFER BY SKILLS
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Notes: This figure shows how welfare effects differ by skills. The welfare effects are measured
in equivalent permanent percentage wage increases. This figure plots the coefficient of a regres-
sion of these welfare effects on skill levels across all dimensions. For interpretability, the skills
are expressed on the O*NET scale from 1 to 7.

5.3 How Do Occupations Change?

We next ask how occupations’ employment and wages are affected by AI.

First, there are strongly heterogeneous effects on occupation’s total wage
bills, average wages, and employment shares (see Figure A.10). While wages
increase by 21.0% on average, wages in some occupation decline in absolute
terms (Figure A.10b). Because our framework allows for occupational re-sorting,
part of these occupational effects reflects selection. The size of this occupational
reallocation is evident in Figure A.10c, which shows that some occupations lose
more than 50% of their employment.

We then zoom in on individual occupations. Figure 4 shows AI’s effects on
the wage bills of 2-digit occupational groups. Community and Social Service ex-
periences the largest wage bill increase, while Office and Administrative Support
sees an absolute decline in its wage bill. The wage bill is the average wage
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times the employment. Figure A.11 shows that the effects on employment and
wages often work in the opposite direction. For instance, Architecture and En-
gineering experiences the largest increase in employment share and the largest
decrease in average wages. Building Cleaning and Maintenance experiences the
largest increase in average wages and a decline in employment.

FIGURE 4: AI’S EFFECT ON OCCUPATIONS’ WAGE BILLS
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Notes: This figure shows the model predictions on AI’s wage bill effects by occupational group.
Appendix Figure A.12 disaggregates these effects across detailed occupations.

We assess how each AI channel—augmentation, automation, and simpli-
fication—contribute to these occupational outcomes. We recompute occupa-
tional outcomes under all possible combinations (e.g., only augmentation, only
augmentation and simplification, etc.) and decompose the total effect into the
contributions of the three channels. Figure 5 summarizes these results. First,
augmentation generates little change in employment shares and raises average
wages almost uniformly across occupations. Second, automation leads to large
changes in employment, but not to substantially different wage growth across
occupations. Finally, simplification generates sizable and opposing effects on
employment and wages: by lowering skill requirements, it expands the pool
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of workers who can perform the occupation productively, which raises em-
ployment but compresses average wages. Appendix Figure A.13 shows this
analysis for more detailed occupational categories.

FIGURE 5: AI’S EFFECT ON OCCUPATIONAL EMPLOYMENT & WAGES
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Notes: This figure shows the model’s predictions on AI’s employment and wage effects by
occupational group. Occupations are sorted in descending order of AI’s effect on the total
wage bill, so that the first listed occupation experiences the largest wage bill increase. We
conduct a Shapley-Owen decomposition to separate the overall change into the contribution of
each channel: augmentation, automation, and simplification.

The regression results in Table B.8 systematically relate occupational out-
comes to augmentation, automation, and simplification exposure. It confirms
that i) augmentation is not a major driver of relative employment or wage
changes, ii) automation mostly reallocates employment to less exposed occupa-
tions while not having strong effects on wages, and iii) simplification leads to
relative wage declines and employment growth. We further consider how aug-
mentation and automation can indirectly induce simplification by shifting the
effective weights of tasks with different skill requirements (Autor and Thomp-
son, 2025; Freund and Mann, 2025). Such indirect simplification has effects on
employment and wages similar to those of direct simplification.

What characterizes occupations that gain the most from AI? Perhaps surpris-
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ingly, there is only a weak relationship between labor market gains and occupa-
tions’ pre-AI skill or education levels (see Figure A.15a). Both the top and bot-
tom deciles by wage bill increases have similar skill requirements and educa-
tion levels. This weak overall relationship masks a U-shaped pattern: through
the 80th percentile, occupations with larger gains tend to have progressively
lower skill requirements (except manual skills), but this reverses sharply at the
top, where the highest-gaining occupations skew toward higher skill intensity.
Education follows the same pattern.

5.4 AI with Physical Capabilities

Lastly, we examine how these occupational effects change when considering
AI technologies with physical manipulation capabilities, such as AI-powered
robots and self-driving vehicles.These estimates are necessarily subject to more
uncertainty, but highlight how technological capabilities determine which hu-
man skills retain value and thus which workers benefit or lose.

The addition of physical capabilities substantially amplifies AI’s labor mar-
ket impact on the wage distribution. Average wages rise by 39 percent in this
scenario (compared to 21 percent with only generative AI). Changes in inequal-
ity, previously shown to be driven mainly by simplification, follow a similar
pattern in both AI scenarios.

There are notable shifts in the patterns of occupational reallocation as AI
gains physical manipulation capabilities (see Figure 6). Community and Social
Service and Education, Training, and Library occupations are the main winners,
more than doubling in wage bill. In contrast, a larger number of occupational
groups now lose over a quarter of their wage bill, including Office and Adminis-
trative Support, Transportation, and Production occupations.

Several occupations that were predicted to experience large gains from gen-
erative AI are predicted to experience large losses if AI gains physical capabil-
ities. The most striking reversals occur for occupations in food preparation and
serving, farming, fishing, and forestry, production, and transportation occupations.
Those are occupations requiring manual skills that AI with physical capabili-
ties (but not generative AI) can automate (see also Figure A.16a). Overall, the
pattern of returns to skills also intensifies our findings for generative AI: math
skills become even more valuable, while the returns to all other skill dimensions
decline further.
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FIGURE 6: AI’S IMPACT WITH VS. WITHOUT PHYSICAL CAPABILITIES
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Notes: This figure shows the model’s predictions on AI’s wage bill effects by occupational group
under two scenarios: one with only generative AI and one where AI systems also possess phys-
ical manipulation capabilities (“smart robots”). Occupations are sorted in descending order of
generative AI’s effect on the total wage bill, so that the first listed occupation experiences the
largest wage bill increase.

Beyond skill requirements, what characterizes the occupations with the largest
increases in the wage bill? There is a strong positive correlation in the edu-
cation level typical to an occupation and their wage bill increase (see Figure
A.16b). This contrasts sharply with the generative AI scenario, in which educa-
tion showed little correlation with changes in occupational outcomes.

6 Early Signs of AI’s Impact on the Labor Market

In this section, we turn from our model’s theoretical predictions to empirical ev-
idence. First, we use recent labor market data from the CPS to test whether the
model’s predictions on the labor market effects of generative AI are beginning
to unfold. Specifically, our event study assesses whether predicted occupational
outcomes correlate with observed changes since the release of ChatGPT in 2022.
Second, we predict changes in the labor market returns to college majors and
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implement a similar event study for college major choices using data from the
National Student Clearinghouse. Third, we zero in on two occupations fre-
quently discussed in relation to AI’s impact to explain and validate the model’s
predictions.

6.1 Event Study of Aggregate Labor Market Shifts

We implement an event study design using Current Population Survey (CPS)
data from 2020 to 2025. Our continuous treatment variable is each occupation’s
model-predicted change in occupational outcome ∆Ỹo (wage bill share, employ-
ment, or wages). The specification assesses whether the model predicts differ-
ential occupational trends after ChatGPT’s release in late 2022, conditional on
occupation fixed effects (αo), time fixed effects (γt), and time fixed effects inter-
acted with occupation-level controls (ηt · Xo):

Yo,t = ∑
k ̸=−1

βk · 1[t = k]× ∆Ỹo + αo + γt + ηt · Xo + ϵo,t. (22)

The coefficients βk capture differential trends for occupations with higher pre-
dicted change, with βk = 1 indicating that the full model-predicted effect has
materialized by period k.31

Figure 7 presents our event study estimates. Occupations predicted to gain
importance based on their wage bill’s share of the overall economy indeed be-
gin to see a relative increase starting around two years after OpenAI’s first re-
lease of ChatGPT. This effect gradually increases over time. The magnitude of
our estimates suggest that by late 2025, between 5 and 10 percent of the pre-
dicted wage bill share gains have materialized.

Appendix Figure A.20 shows results for the wage bill’s two components: em-
ployment and wages. Employment begins to rise significantly for occupations
predicted to gain employment from AI starting around one year after Chat-
GPT’s release. In contrast, we do not observe any meaningful effects on wages,
suggesting that the initial adjustment of the labor market occurs mostly through
quantities not prices (this finding is consistent with evidence on young workers
from Brynjolfsson et al., 2025a).

31To reduce sampling noise, we aggregate monthly CPS data into 6-month periods to com-
pute the occupational outcomes Yo,t. Our sample includes working-age individuals (18-65) in
the labor force.
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FIGURE 7: EARLY LABOR MARKET EFFECTS OF GENERATIVE AI
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Notes: Event study estimates (β̂k) show differential changes in occupational wage bill shares
following ChatGPT’s November 2022 release. Coefficients represent the effect of the model-
predicted change in the outcome on the observed outcome. A coefficient of 1 would indicate
complete realization of model predictions. Estimates use CPS data aggregated to 6-month peri-
ods with occupation fixed effects and time fixed effects. The specification with controls includes
occupation-specific trends based on education, sectoral composition, demographics, and pre-
AI wages. Error bars represent 95%-confidence intervals.

We interpret this evidence as suggestive, particularly given that some em-
ployment effects appear to predate 2022. While this timing could indicate that
other factors correlated with AI exposure are driving these patterns, an alter-
native explanation is that occupations most exposed to AI (such as radiolo-
gists and telemarketers) had already begun adopting generative AI tools before
ChatGPT’s public release (see, e.g., Acemoglu et al., 2022).

6.2 Event Study of Shifts in College Major Choices

We next assess how the returns to majors change in the era of AI and whether
college students have already begun adjusting their major choices. Major choices
offer useful insights on early responses to technical change as young, higher-
educated Americans are among the earliest AI adopters (Bick et al., 2024) and
major choices can adjust quickly. In contrast, labor market adjustments require
occupational switching, retraining, and equilibrium price adjustments.

To construct predictions for the changes in returns to each major, we combine
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our model-based estimates on AI-induced changes in the labor market returns
to skills with skill intensity measures from the Course-Skill Atlas, which maps
majors to ONET tasks via information from course syllabuses (Javadian Sabet
et al., 2024). We link their major-task mapping to our task-skill framework,
yielding skill intensities across our five dimensions for each major. As the main
outcome, we use major enrollment from the National Student Clearinghouse,
covering 96 percent of all US post-secondary students.

Majors intensive in skills that retain value under AI—particularly math and
manual skills—see the largest predicted gains (see Appendix Figure A.17). At-
mospheric sciences, astronomy, earth sciences, chemistry, and engineering rank
among the top winners with returns rising over 2 percentage points more than
for the average major. In contrast, majors intensive in verbal skills, where our
model predicts the largest decline in returns, fare worst. French, theology, and
Hebrew appear at the bottom of the distribution.

FIGURE 8: EARLY COLLEGE MAJOR EFFECTS OF GENERATIVE AI
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Notes: This figure shows event study estimates (β̂k), corresponding to differential changes in
college major enrollment (in logs) following ChatGPT’s November 2022 release. Coefficients
represent the effect of the model-predicted change in returns to each major on observed log
enrollment. A coefficient of 1 would indicate that a one percentage point increase in a major’s
returns (relative to the average major) is associated with a doubling in enrollment. Estimates
use National Student Clearinghouse data with major fixed effects and time fixed effects. Error
bars represent 95%-confidence intervals clustered at the major level.

Using our predictions of each major’s changing return, we implement an
event study design paralleling our analysis of labor market outcomes. The
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specification follows equation (22), with college major enrollment as the out-
come and predicted changes in returns to each major as the continuous treat-
ment variable.

Following ChatGPT’s first release, a clear positive relationship emerges: stu-
dents increasingly enroll in majors our model predicts will benefit from AI-
induced changes in skill returns (see Figure 8). By the spring of 2025, a one per-
centage point increase in a major’s returns (a large change) was associated with
a 30 percent increase in enrollment. Prior to ChatGPT’s release, the coefficients
fluctuate around zero with no discernible trend, suggesting that majors pre-
dicted to benefit from AI were not already experiencing differential enrollment
growth. This evidence suggests that students are already reallocating toward
fields better positioned for an AI-transformed labor market.

6.3 Case studies

Radiologists. In 2016, deep learning pioneer Geoffrey Hinton warned to “stop
training radiologists,” because AI would render them obsolete within five years.
Since then, radiology has indeed accounted for more than 75 percent of all FDA-
authorized clinical AI tools, and roughly two-thirds of US radiology depart-
ments report using AI (Mousa, 2025). However, the labor market for radiol-
ogists has grown: the wage bill share increased by 6.6 percent between 2016
and 2024. This increase is driven by strong employment growth (23.2% versus
average of 9.8%) and attenuated by below-average wage growth (30.1% versus
average of 36.9%).

Our model’s predictions line up with these observed labor market patterns.
We predict a 42 percent wage bill increase, 1.75 times larger than the average
(see Appendix Figure A.12). In line with observed occupational changes, the
model-predicted increase in the wage bill from AI is driven by above-average
employment growth (28% versus average of 0% by construction) and below-
average wage growth (11% versus average of 21%; see Appendix Figure A.13).32

Simplification is the key to understanding these outcomes. The occupation
experiences strong simplification, pushing employment up and relative wages
down. Automation, which affects other occupations far more, increases radi-
ologists’ employment further (small effects on wages); augmentation generally

32The model outcomes are for Health Diagnosing and Treating Practitioners, the 3-digit occupa-
tional group that includes radiologists.
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does not strongly affect employment or relative wages.

Management Analysts. We predict that the importance of management an-
alysts (management consultants) will shrink. The model predicts a 4 percent
decline in employment and no change in wages—a wage effect well below the
average of 21 percent (see Appendix Figure A.13).33

The reason for this prediction is that management analysts are strongly ex-
posed to both simplification and automation. Simplification pushes average
wages down and employment up. However, automation offsets the positive ef-
fects on employment, so that the occupation ends up being negatively affected
in both dimensions.

The pattern of simplification in management consultancy aligns with exper-
imental evidence. Dell’Acqua et al. (2023) find that lower-skilled consultants
experience larger productivity gains from AI. Through the lens of our model,
this can only be explained through (direct or indirect) simplification: the re-
duction in skill requirements increases the relative productivity of less skilled
workers.

Telemarketers. Telemarketers represent one of the clearest cases where AI
substitutes for, rather than complements, human labor. Their work consists of
12 distinct tasks, all of which can be automated by generative AI. The broader
occupational group, Other Sales and Related Workers, also faces high automation
exposure, raising wages and reducing employment, and very little simplifica-
tion (which would otherwise oppose automation’s positive wage effects). In-
deed, our model predicts that this occupational group experiences increasing
wages but ranks among the 5 percent of most negatively affected groups in
terms of both employment and total wage bill (see Appendix Figures A.12 and
A.13).

7 Conclusion

Technological change reorganizes production at the task level, so understand-
ing its labor-market effects requires characterizing workers’ comparative ad-
vantage across occupations and tasks. This paper develops and estimates a

33The model outcomes are for Business Operations Specialists, the 3-digit occupational group
that includes management analysts.

40



dynamic task-based framework that recovers this comparative advantage and
embeds it in a general-equilibrium model of occupational choice and skill accu-
mulation. We use this framework to study artificial intelligence as a technology
that augments, automates, and simplifies tasks. The quantified model predicts
that generative AI substantially raises wages, especially in the lower part of the
wage distribution. A decomposition shows that simplification of tasks is the
key driver behind AI’s distributional effects.

This paper raises several important questions for future research. First, in
our framework, we take the technical change brought about by AI as exoge-
nous. One could, however, consider how simplifying technologies arise from
directed innovation when particular skills are in short supply (Acemoglu, 2002;
Acemoglu and Restrepo, 2018). Second, we treat workers’ skills at labor market
entry as exogenous. It is useful, however, to consider how technical change may
affect people’s educational choices (Heckman et al., 1998). Last, this paper only
considers the effect of technical change on the labor market. However, technical
change can also have strong distributional implications through capital income
(Moll et al., 2022) and business income (Reichardt, 2025). For the latter, it is
particularly pressing to understand whether AI’s simplifying capabilities allow
specifically small firms to benefit from its use.
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FIGURE A.1: PRODUCTION AND SKILL ACCUMULATION: FUNCTIONAL
FORMS

(A) PRODUCTION
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(B) SKILL ACCUMULATION
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Notes: This figure illustrates the functional forms of the production and skill accumulation
functions in equations (14) and (16), respectively. Panel A shows the production function
f (hs, rτ,s) = hω

s exp
(
−η min {hs − rτ,s, 0}2

)
. Panel B shows the learning part of the skill ac-

cumulation function: g̃ (hs, rτ,s, λ) = max {rτ,s − hs, 0} exp (−λ max {rτ,s − hs, 0}). It illustrates
that maximum learning is attained when the skills are 1

λ below the skill requirements.
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A Figures

FIGURE A.2: VALIDATION OF TASK SKILL REQUIREMENT DATA WITH O*NET
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Notes: This figure shows the correlation between the occupation-level skill requirement in the
O*NET database and the GPT-4o generated task-level skill requirements aggregated to the
occupation-level for the skills used in the analysis. Each observation represents an occupa-
tion in the O*NET database.
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FIGURE A.3: VALIDATION OF TASK SKILL REQUIREMENT DATA WITH O*NET
(35 SKILL DIMENSIONS)
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Notes: This figure shows the correlations between the occupation-level skill requirement in
the O*NET database and the GPT-4o generated task-level skill requirements aggregated to the
occupation-level for each of the 35 skills.
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FIGURE A.4: AGREEMENT ON AI EXPOSURE WITH ELOUNDOU ET AL. (2024)
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Notes: This figure compares our estimates tasks’ exposure to augmentation and automation by
generative AI. Panel A shows our task-level augmentation estimates (time saved to complete
each task in an occupation) to those provided by Eloundou et al. (2024), measuring whether or
not large language models can save at least 50 percent of time to complete a task (binary). Panel
B shows the the share of tasks in each occupation that can be automated by generative AI with
similar data provided by Eloundou et al. (2024).
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FIGURE A.5: SKILLS & GENERATIVE AI EXPOSURE BY CHANNEL
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Notes: This figure shows the correlation between a task’s skill requirements and its potential
to be augmented, automated, or simplified by Generative AI. Each dot represents the average
percentile of exposure to each channel among tasks with the same requirement in a given skill.
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FIGURE A.6: INITIAL SKILL DISTRIBUTION

1 2 3 4 5 6 7
Skill level at labor market entry

D
en

si
ty

Notes: This figure shows the estimated density of the skill distribution of young workers (age
a = 1 in the model) on O*NET’s 1 to 7 scale. For comparison, for the skill “reading comprehen-
sion”, a 2 means being able to “read step-by-step instructions for completing a form”, 4 means
being able to “understand an email from management describing new personnel policies”, and
6 means being able to “read a scientific journal article describing surgical procedures”.

FIGURE A.7: MODEL FIT: COMPARING MODEL MOMENTS WITH DATA
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Notes: Panel A shows the correlation between the average wage in an occupation in the model’s
steady state and in the data as reported in the 2018 BLS OEWS data. Panel B reports the median
wage by age in the NLSY79 and the model’s steady state.
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FIGURE A.8: WAGE EFFECTS ACROSS THE DISTRIBUTION FOR ALL
CHANNELS
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Notes: This figure shows the distribution of wage changes induced by generative AI across the
wage percentile distribution. The horizontal axis represents wage percentiles weighted by pre-
AI employment, and the vertical axis shows the percentage change in wages for each percentile.
The black line shows the joint effect of AI’s augmentation, automation, and simplification on
each wage percentile. Other lines show the effects when each of the three channels are operating
alone.
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FIGURE A.9: DISTRIBUTION OF WELFARE EFFECTS
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Notes: This figure shows the distribution of AI’s welfare effect on individual workers. The wel-
fare effect is measured in equivalent wage variation: it represents the permanent wage increase
across all occupations that yields the same welfare gain as the introduction of AI.

FIGURE A.10: GENERATIVE AI’S EFFECT ACROSS OCCUPATIONS
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Notes: This figure shows the distribution of generative AI’s predicted effects across occupations
based on our structural model. Panel (A) shows wage bill changes (wages × employment).
Panel (B) shows wage changes. Panel (C) shows employment effects, which are symmetric
around zero by definition as our model does not feature unemployment.
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FIGURE A.11: AI’S EFFECT ON OCCUPATIONAL EMPLOYMENT & WAGES

(A) EMPLOYMENT
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Notes: This figure shows the model’s predictions on AI’s employment and wage effects by
occupational group. Occupations are sorted in descending order of AI’s effect on their wage
bill, so that the first listed occupation experiences the largest wage bill increase.
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FIGURE A.12: AI’S EFFECT ON DETAILED OCCUPATIONS’ WAGE BILLS
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Notes: This figure shows the model predictions on AI’s wage bill effects by occupation.
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FIGURE A.13: AI’S EFFECT ON DETAILED OCCUPATIONS’ EMPLOYMENT &
WAGES
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Notes: This figure shows the model’s predictions on AI’s employment and wage effects by oc-
cupation. Occupations are sorted in descending order of AI’s effect on the total wage bill, so
that the first listed occupation experiences the largest wage bill increase. We conduct a Shapley-
Owen decomposition to separate the overall change into the contribution of each channel: aug-
mentation, automation, and simplification.
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FIGURE A.14: AUTOMATION EXPOSURE MOST PREDICTIVE OF LABOR MARKET
LOSSES
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(B) AUTOMATION
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(C) SIMPLIFICATION
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Notes: This figure shows the relationship between three dimensions of AI exposure and model-
predicted changes in occupational wage bills. Each bubble represents an occupation, with size
proportional to pre-AI employment. Panel (A) shows augmentation exposure, measured as the
share of time access to generative AI can save in completing an occupation’s tasks. Panel (B)
shows automation exposure, measured as the share of an occupation’s tasks than generative
AI can complete autonomously. Panel (C) shows simplification exposure, measured as the
(negative) relative change of skill levels required to complete an occupation’s tasks (averaged
across all 35 O*NET skills).

FIGURE A.15: SKILLS AND EDUCATION BY GENAI’S WAGE BILL EFFECT
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Notes: This figure shows the relationship between occupational characteristics and generative
AI’s wage bill effects. Panel A plots average skill requirement deciles against wage bill effect
deciles. Panel B plots education levels against wage bill effect deciles. Each point represents a
decile of occupations ranked by their predicted wage bill change, weighted by pre-AI employ-
ment.
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FIGURE A.16: SKILLS AND EDUCATION BY WAGE BILL EFFECT: PHYSICAL AI
SCENARIO
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Notes: This figure shows the relationship between occupational characteristics and AI’s wage
bill effects when physical manipulation capabilities are available. Panel A plots average skill
requirement deciles against wage bill effect deciles. Panel B plots education levels against wage
bill effect deciles. Each point represents a decile of occupations ranked by their predicted wage
bill change, weighted by pre-AI employment.
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FIGURE A.17: AI’S EFFECT ON COLLEGE MAJOR ENROLLMENT
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Notes: This figure shows the model’s predictions on AI’s effect on returns to college majors.
Returns are calculated by combining major-level skill intensities from the Skill Atlas with the
model’s predicted changes in returns to each skill dimension. Values are centered relative to
the average major.
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FIGURE A.18: RADIOLOGISTS’ TASK-BASED AUTOMATION EXPOSURE
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Notes: This figure shows radiologists’ automation exposure across all tasks they engage in ac-
cording to O*NET. We classify a task as ‘automatable’ if it has high or full automation exposure,
which is restricted to cases where the LLM indicates that generative AI can complete at least
90% of the components of the tasks. We classify skill requirements as “high” if they exceed level
3.5 in O*NET’s scale from 1 to 7.

FIGURE A.19: MANAGEMENT ANALYSTS’ TASK-BASED AUTOMATION
EXPOSURE
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Notes: This figure shows management analysts’ automation exposure across all tasks they en-
gage in according to O*NET. We classify a task as ‘automatable’ if it has high or full automation
exposure, which is restricted to cases where the LLM indicates that generative AI can complete
at least 90% of the components of the tasks. We classify skill requirements as “high” if they
exceed level 3.5 in O*NET’s scale from 1 to 7.
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FIGURE A.20: EARLY LABOR MARKET EFFECTS OF GENERATIVE AI
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(B) WAGES
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Notes: Event study estimates (β̂k) show differential changes in occupational employment and
wages following ChatGPT’s November 2022 release. Coefficients represent the effect of the
model-predicted change in the outcome on the observed outcome. A coefficient of 1.0 would
indicate complete realization of model predictions. Estimates use CPS data aggregated to 6-
month periods with occupation fixed effects and time fixed effects. The specification with
controls includes occupation-specific trends based on education, sectoral composition, demo-
graphics, and pre-AI wages. Error bars represent 95%-confidence intervals.
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B Tables

TABLE B.1: AGGREGATION OF O*NET’S SKILL REQUIREMENTS TO 5
DIMENSIONS

Skill O*NET skill O*NET skill category

Manual

Equipment Maintenance Technical
Equipment Selection Technical
Installation Technical
Repairing Technical

Math Mathematics Basic Content

Social

Active Listening Basic Content
Coordination Social
Instructing Social
Management of Personnel Resources Resource Management
Negotiation Social
Persuasion Social
Service Orientation Social
Social Perceptiveness Social

Technical

Complex Problem Solving Complex Problem Solving
Judgment and Decision Making Systems
Operation and Control Technical
Operations Analysis Technical
Operations Monitoring Technical
Programming Technical
Quality Control Analysis Technical
Science Content
Systems Analysis Systems
Systems Evaluation Systems
Technology Design Technical
Troubleshooting Technical

Verbal
Reading Comprehension Basic Content
Speaking Basic Content
Writing Basic Content

Notes: This table shows the mapping of the five skill clusters—Manual, Math, Social, Verbal,
and Technical—to the relevant O*NET skills and their respective O*NET’s skill category. For
each of the skills, we set the requirement to the average across the relevant O*NET skills. We
dropped 7 out of 35 O*NET skill dimensions that could not be clearly mapped into the skills
used in the analysis.
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TABLE B.2: AGREEMENT ON AUTOMATION EXPOSURE WITH ELOUNDOU
ET AL. (2024)

Eloundou et al. (2024)

Our measure None Low Medium High Full

None 26.86 1.65 0.01 0.34 0.14
Low 6.12 21.34 1.98 2.18 0.12
Medium 0.17 7.27 7.61 3.65 0.06
High 0.04 1.77 5.61 11.53 0.18
Full 0.02 0.07 0.02 1.02 0.24

Notes: This table shows the agreement rates between our measure of automation and that of
Eloundou et al. (2024) on the task-level. The table is computed based on 14,209 tasks (out of
19,530) that are in both databases. We classify a task as automated if the exposure is “high”
or “full”. The share of automated tasks is 21% and 22% in Eloundou et al. (2024)’s and our
measure, respectively.

TABLE B.3: SUMMARY OF TASK-LEVEL DATA ON AI CAPABILITIES

Augmentation Automation Simplification

Excluding Including
automatable tasks automatable tasks

Mean 17.9% 20.2% 22.2% 18.3%
Std. Dev. 9.4% 9.6% 41.6% 6.6%
Median 20.0% 20.0% 0.0% 20.4%
Range 0.0% - 70.0% 0.0% - 70.0% 0.0% - 100.0% 0.0% - 32.0%

Tasks 15,192 19,530 19,530 19,530

Notes: This table summarizes our new estimates of generative AI’s potential impact on tasks
across three channels: augmentation (share of worker’s time saved by technology to complete
the task), automation (share of tasks that can be fully automated by technology), and simplifica-
tion (relative decrease in average skill requirements across all 35 O*NET skill dimensions). For
augmentation, we present estimates both excluding and including tasks that can be automated.
Augmentation and simplification estimates are generated by GPT-4o; automation estimates are
generated by GPT-5 with low to medium reasoning effort.
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TABLE B.4: EXPERIMENTAL ESTIMATES COMPARED TO OUR TASK
AUGMENTATION DATA

Occupation Task Tool Estimate N Notes Source

Theirs Ours

Software developer Coding GitHub

Copilot

26% 30% 4,867 +26.1% number of completed tasks in lab; new de-

velopers higher adoption rates & higher produc-

tivity gains

[1]

Software developer Coding GitHub

Copilot

56% 27% 95 55.8% time saved, quality ↑ [2]

Software developer Coding GitHub

Copilot

36% 30% 23 36% time saved for familiar tasks; no change for

unfamiliar tasks; 48% fewer issues

[3]

Programmer Coding GPT-3 27% 30% 100 27% time saved among 100 expert programmers;

50 non-programmers perform tasks similarly well

with LLM

[4]

Programmer Coding GitHub

Copilot

0% 28% 24 No time saved; however, most participants still

preferred using LLM

[5]

Management con-

sultant

Consulting GPT-4 25% 30% 758 25.1% time saved, +12.2% tasks completed, +40%

quality (decreased for tasks beyond AI frontier);

lower-skilled consultants benefited more

[6]

Customer support Resolution GPT-4 14% 30% 5,179 +14% productivity (issues resolved per hour),

+34% for new & low-skill workers; minimal im-

pact on experienced & high-skill workers

[7]

– Writing GPT-3.5 40% 30% 453 40% time saved, +18% output quality; inequality

between workers ↓; low-skill workers benefited

most; likelihood of using AI after experiment ↑

[8]

Taxi driver Selecting

routes

AI Navi 14% 9% 520 Shorter cruising time; gains only among low-skill

drivers

[9]

Lawyer Legal writing Vincent

& o1-

preview

20% 30% 127 19.9% time saved across different legal writing

tasks, quality ↑, LLM “Vincent” slightly higher

gains

[10]

Product designer Product mar-

keting & de-

velopment

GPT-4o 13-

16%

30% 776 +0.37 SD quality and 16.4% time saved for individ-

uals; +0.39 SD quality and 12.7% time saved for

teams

[11]

Software developer Coding GitHub

Copilot

65% 27% 24 Developers implemented ∼65% more require-

ments with AI assistance

[12]

Software developer Coding Google

AI

Tools

21% 30% 96 AI users finished an enterprise-grade task 21%

faster. Results stronger for senior developers.

[13]

Programmer Coding CodeFuse 55% 30% 1,219 Lines of code produced ↑ 55%, gains concentrated

among junior staff

[14]

Knowledge workers E-mail MS 365

Copilot

11% 26% 7,137 Treated spent 12% less time on email each week;

did not significantly change time spent in meet-

ings.

[15]

Train commission-

ing technician

Trouble-

shooting

GPT-3.5

+ RAG

20% 20% 173 +1.14 SD quality score; 20% increase in tasks

completed not significant; less-experienced bene-

fit more.

[16]

Notes: Sources correspond to [1] Cui et al. (2024), [2] Peng et al. (2024), [3] Clarke and Hanrahan (2024), [4] Campero
et al. (2022), [5] Vaithilingam et al. (2022), [6] Dell’Acqua et al. (2023), [7] Brynjolfsson et al. (2025), [8] Noy and Zhang
(2023), [9] Kanazawa et al. (2022), [10] Schwarcz et al. (2024), [11] Dell’Acqua et al. (2025), [12] Weber et al. (2024), [13]
Paradis et al. (2024), [14] Gambacorta et al. (2024), [15] Dillon et al. (2025). [16] Lowhagen et al. (2025). To construct
our own estimates of task augmentation (share of time saved to complete task) by generative AI at the level of work
activities, we aggregate our task-level estimates within the relevant occupation as equally weighted averages for tasks
we judge to be relevant to the work activity covered in each experiment.
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TABLE B.5: OVERVIEW OF MODEL PARAMETERS

Model object Symbol Value How it is set

Elast. of substitution: Occupations σ 1.57 Burstein et al. (2019);

Caunedo et al. (2023).

Elast. of substitution: Tasks ρ 0.49 Humlum (2019).

Number of occupations J 93 3-digit BLS SOC occupa-

tions.

Number of periods A 40 Years between 25 and 65.

Discount factor β 0.78 Following Keane and

Wolpin (1997).

Skill dimensions S Addison et al. (2020); Baley

et al. (2022), plus manual.

Occupational task sets Tj O*NET tasks.

Occupational task weights θj,τ O*NET task importance.

Task-level skill requirements rτ Large language model.

Task-level AI augmentation γτ ”

Task-level AI automation Aj ”

Learning cost: 1st AFQT quartile λ(1) 3.50 Maximum likelihood.

Learning cost: 2nd AFQT quartile λ(2) 2.97 ”

Learning cost: 3rd AFQT quartile λ(3) 2.81 ”

Learning cost: 4th AFQT quartile λ(4) 2.67 ”

Human capital depreciation δ 0.0003 ”

Scale of productivity shocks ζ 0.053 ”

Occupational switching cost κ 0.340 ”

Skill distribution (Beta) (Ba, Bb) (62,114) ”

Cost of underqualification η 0.04 OLS within MLE routine.

Skill productivity: Manual ωMn 0.33 ”

Skill productivity: Math ωMt 0.79 ”

Skill productivity: Social ωS 0.55 ”

Skill productivity: Technical ωT 0.22 ”

Skill productivity: Verbal ωV 0.36 ”

Occupational amenities {µj}J
j=1 Match employment shares à

la (Berry et al., 1995).

Occupational demand {αj}J
j=1 Using estimated prices and

wage bills.

Notes: This table provides an overview of the parameters of the model, their mathematical
symbols, the value at which they are set, and the procedure with which we arrived at the value.
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TABLE B.6: OCCUPATIONAL SKILL REQUIREMENTS PREDICT OCCUPATIONAL
PRICES

Dependent variable: Log occupational price p̂j

Skill requirements

Manual 0.228 0.230 0.226 0.227
(0.207) (0.214) (0.201) (0.208)

Math -0.070 -0.073 -0.077 -0.080
(0.277) (0.286) (0.269) (0.278)

Social -0.083 -0.078 -0.077 -0.073
(0.352) (0.363) (0.341) (0.353)

Technical 1.342∗∗ 1.341∗∗ 1.353∗∗ 1.352∗∗

(0.599) (0.619) (0.581) (0.601)

Verbal 0.554 0.554 0.550 0.550
(0.376) (0.388) (0.364) (0.377)

Sample occupations All 50+ All 50+
Empirical Bayes applied No No Yes Yes
Observations 93 87 93 87
R2 0.73 0.73 0.74 0.74

Notes: This table shows the coefficients and R2 of a regression of the estimated occupational
prices (in logs) on occupational skill requirements. Each observation represents one occupa-
tion and is weighted by the number of worker-year observations in that occupation. Columns
where sample occupations indicates “50+” only include occupations with at least 50 observa-
tions. The third and fourth column show the results with fixed effects on which empirical Bayes
regression has been applied. Occupational prices are estimated as the occupational fixed effects
in regression equation (17). Occupational skill requirements refer to ∑τ∈Tj

θj,τrτ,s. * p < 0.10, **
p < 0.05, *** p < 0.01.
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TABLE B.7: MODEL FIT: WAGE INEQUALITY IN DATA AND MODEL

Ratios Top shares

Gini p90
p10

p90
p50

p75
p25 10% 5% 1%

Data 0.32 4.01 2.13 2.04 0.26 0.16 0.05

Model 0.24 2.96 1.83 1.84 0.20 0.11 0.02

Notes: This table reports measures of inequality in the unconditional wage distribution in the

data (NLSY79) and in the model’s steady state. The unit of observation is a worker-age pair in

the data and in the model. We only included workers who remain in the NLSY79 and work

until 2020 without interruptions over 18 months. Sample weights are applied in the NLSY79

data.

TABLE B.8: SKILL CHANNELS AND LABOR MARKET OUTCOMES

Wage Employment
growth (%) growth (%)

(1) (2) (3) (4)

Augmentation 1.48 -2.89 2.11 6.79**
(4.79) (4.18) (3.18) (2.91)

Automation 4.74** 19.04*** -23.86*** -39.03***
(1.80) (3.94) (1.39) (3.67)

Simplification -24.68*** -15.19*** 24.81*** 15.25***
(4.25) (3.38) (2.93) (2.94)

Indirect simplification

Augmentation-led 3.52* -2.50**
(1.78) (1.24)

Automation-led -15.88*** 17.05***
(4.34) (4.22)

Observations 93 93 93 93

Notes: This table presents weighted OLS regressions of occupation-level wage and employment growth on AI exposure
measures and skill requirement changes. The dependent variable is wage growth in columns (1)–(2) and employment
growth in columns (3)–(4). All independent variables are standardized to have standard deviation 1. Columns (1)
and (3) include only direct AI exposure measures (augmentation, automation, simplification). Columns (2) and (4)
add indirect skill requirement changes induced by AI. All regressions are weighted by pre-AI occupation employment
shares. Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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C Estimation

C.1 Cost savings and AI’s income share

The cost of performing a task τ with the worker’s unit of time equals

cl
τ(h) ≡

Λj(h)
γτ f (h, rτ)

where Λj(h) is the shadow value of a unit of time in occupation j given skills h.
Similarly, let ck

τ be the unit cost of producing task τ with capital, i.e.,

ck
τ ≡ R

ϕτ
.

For any automated task τ ∈ Aj, the cost of producing the task with capital
relative to performing the task by labor thus equals

χτ ≡ ck
τ

cl
τ(h)

= ck
τ ·

γτ f (h, rτ)

Λj(h)
.

Since the shadow value of a unit of time is the wage, i.e., Λj(h) = wj(h),
equation (8) implies that cost savings are equal to

χτ =
ck

τ

pj

1 − ∑
τ∈Aj

θj,τ

(
ck

τ

pj

)1−ρ
 1

ρ−1
γτ f (h, rτ)(

∑τ∈Nj
θj,τγ

ρ−1
τ f (h, rτ)ρ−1

) 1
ρ−1

.

For our quantification, we need an estimate of ∑τ∈Aj
θj,τ

(
ck

τ
pj

)1−ρ
for each occu-

pation. To obtain this, we make two simplifying assumptions. First, we assume
that the cost savings do not vary across automatable tasks, i.e., χτ = χ for all
τ ∈ Aj and ∀j = 1, . . . , J. Second, we assume that the automated tasks are
not different in productivity and skill requirements from the non-automatable
tasks, i.e., γ

ρ−1
τ f (h, rτ)

ρ−1 ≈ ∑τ∈Nj
θj,τγ

ρ−1
τ f (h, rτ)ρ−1 for all τ ∈ Aj and ∀j =

1, . . . , J. Under those two assumptions, the cost savings simplify to

χ =
ck

τ

pj

1 − ∑
τ∈Aj

θj,τ

(
ck

τ

pj

)1−ρ
 1

ρ−1
1(

1 − ∑τ∈Aj
θj,τ

) 1
ρ−1

∀j = 1, . . . , J, ∀τ ∈ Aj
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so that

ck
τ/pj =

χρ−1

1 − ∑
τ∈Aj

θj,τ

+ ∑
τ∈Aj

θj,τ

 1
ρ−1

,

from which equation (21) follows.

C.2 Log-linearization of the production function

In this paragraph, we derive the log-linear wage regression equation in (17).
Starting from the wage equation (15), and imposing Aj = ∅ (so that Γj = 1 and
Nj = Tj) for all j = 1, . . . , J, we obtain

log wj(h) = log pj + ∑
s∈S

ωs log(hs)

+
1

ρ − 1
log

 ∑
τ∈Tj

θj,τγ
ρ−1
τ exp

(
−η ∑

s∈S
min {hs − rτ,s, 0}2

)ρ−1
 .

Now define the variable mτ ≡ ∑s∈S min{hs − rτ,s, 0}2 and log-linearize the
wage function around mτ = 0 for all τ ∈ Tj. That is, we linearize the wage
function around the perfectly matched worker.

A first-order Taylor expansion around this point yields

log

 ∑
τ∈Tj

θj,τγ
ρ−1
τ exp ((1 − ρ) η mτ)



≈ log

 ∑
τ∈Tj

θj,τγ
ρ−1
τ

+ η(1 − ρ)

∑
τ∈Tj

θj,τγ
ρ−1
τ mτ

∑
τ∈Tj

θj,τγ
ρ−1
τ

= (1 − ρ)

η ∑
τ∈Tj

θj,τγ
ρ−1
τ mτ


where the second equality follows from ∑τ∈Tj

θj,τγ
ρ−1
τ = 1. Combining the

equations above with the definition of mτ yields equation (17).
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D Data

D.1 Task-level Skill Requirements

We elicit a task’s skill requirements by replicating O*NET’s occupation-level
questionnaire on the task-level using OpenAI’s GPT-4o. We requested the skill
requirement for each of the 19,530 tasks for each of the 35 skill dimensions,
resulting in 683,550 independent prompts. As in O*NET, the skill requirements
are rated from 1 to 7 and each of the 35 skills have different “level anchors”
to indicate the meaning of levels 2, 4, and 6. These anchors, as well as the set
of tasks in each occupation, and their descriptions, are taken from the O*NET
database. Below, we present the full text of the prompt for the skill Reading
comprehension, the occupation Chief Executives, and the task “Prepare budgets for
approval, including those for funding or implementation of programs.”

The occupation [Chief Executives] contains the task: [Prepare budgets for
approval, including those for funding or implementation of programs].

What level of skill in [reading comprehension] is needed to perform the task
in this occupation well?

Provide the answers on a scale from 1 to 7, where 2 means [Read step-by-
step instructions for completing a form], 4 means [Understand an email
from management describing new personnel policies], and 6 means [Read
a scientific journal article describing surgical procedures].

Output only a single integer, valued between 1 and 7. Do not output any-
thing else.

D.2 AI and Task Augmentation, Automation, Simplification

We model technologies’ impact on workers through three distinct channels:
augmentation, automation, and simplification. We leverage O*NET’s assess-
ment framework and descriptions of occupations, tasks, and skills to generate
new data using OpenAI’s large language models. In our baseline scenario, we
only consider Generative AI. However, we also consider automation by Au-
tonomous Vehicles, and Smart Robots. For automation assessments, we use
GPT-5; for augmentation and simplification channels, we use GPT-4o (com-
pleted before GPT-5’s release).
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D.2.1 Augmentation of Tasks

For augmentation assessment, we ask GPT-4o to estimate time savings when
workers get access to these technologies. We assess all 19,530 O*NET tasks and
the technologies “generative AI,” “smart robots,” and “autonomous vehicles,”
resulting in 58,590 prompts that are evaluated independently. We use OpenAI’s
GPT-4o with temperature between 0.05 and 0.1.

The prompt structure is consistent across technologies, varying only in the
technology description. Here we show the full prompt for Generative AI:

We are conducting a rigorous assessment of the time a worker can save on
specific tasks by using Generative AI.

1. Description of technology: Generative AI

Generative AI refers to AI techniques that learn a representation of artifacts
from data, and use it to generate brand-new, unique artifacts that resem-
ble but don’t repeat the original data. These artifacts can serve benign or
nefarious purposes. Generative AI can produce totally novel content (in-
cluding text, images, video, audio, structures), computer code, synthetic
data, workflows and models of physical objects. Generative AI also can be
used in art, drug discovery or material design.

2. Description of the worker and the task:

Worker’s role: [Occupation] with an average level of expertise.

Worker’s access to tools: Has all the standard tools available to someone in
this position. In addition, this worker now gains access to a Generative AI.

Worker’s task: [Occupational task]

3. Question:

Estimate the percentage of time that the worker can save by using the de-
scribed Generative AI to assist with the task.

4. Output Format:

Provide your answer as a percentage (numeric value between 0 and 100).
Do not output an explanation or any additional information. The answer
should be a single number representing the estimate.

For Smart Robots, the technology description changes to:
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A smart robot is an AI-powered, often-mobile machine designed to au-
tonomously execute one or more physical tasks. These tasks may rely on,
or generate, machine learning, which can be incorporated into future activ-
ities or support unprecedented conditions. Smart robots can be split into
different types based on the tasks/use cases, such as personal, logistics and
industrial.

For Autonomous Vehicles, the description is:

An autonomous vehicle is one that can drive itself from a starting point to
a predetermined destination in “autopilot” mode using various in-vehicle
technologies and sensors, including adaptive cruise control, active steering
(steer by wire), anti-lock braking systems (brake by wire), GPS navigation
technology, lasers and radar.

D.2.2 Automation of Tasks

To measure technologies’ potential to automate occupational tasks, we follow
Eloundou et al. (2024) in using a five-tier rubric ranging from no automation
(T0) to full automation (T4) exposure. We assess all 19,530 O*NET tasks and
the technologies “generative AI”, “smart robots”, and “autonomous vehicles”,
resulting in 58,590 prompts that are evaluated independently. We use OpenAI’s
GPT-5 with low to medium reasoning effort and temperature between 0.05 and
0.1.

The automation prompt follows Eloundou et al. (2024)’s format, with technology-
specific definitions and examples. The prompt for Generative AI is:

T Automation Rubric

1. Determine if the occupation/task pair meets the definition of T0 No-
Automation Exposure. If it does, label it as T0 and stop.

2. If the occupation/task pair does not meet the definition of T0 No-Automation
Exposure, determine if the occupation/task pair meets one of the other defi-
nitions and select the label that applies:

• T4: Full automation exposure

• T3: High automation exposure

• T2: Moderate automation exposure
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• T1: Low automation exposure

Rubric

Generative AI refers to AI techniques that learn a representation of artifacts
from data, and use it to generate brand-new, unique artifacts that resem-
ble but don’t repeat the original data. These artifacts can serve benign or
nefarious purposes. Generative AI can produce totally novel content (in-
cluding text, images, video, audio, structures), computer code, synthetic
data, workflows and models of physical objects. Generative AI also can be
used in art, drug discovery or material design.

Assume you are a worker with an average level of expertise in your role
trying to complete the given task. You have access to Generative AI as well
as any other existing software or computer hardware tools mentioned in
the task. You also have access to any commonly available technical tools
accessible via a laptop (e.g. a microphone, speakers, etc.). You do not have
access to any other physical tools or materials.

Please label the given task according to the rubric below.

T0 No-Automation Exposure A class of tasks for which Generative AI
cannot conceivably perform any aspect of the task in any manner.

T4 Full Automation Exposure A class of tasks where, in most contexts in
which this task is currently performed by a human, Generative AI can com-
plete all aspects of this task with high quality when prompted by a human.
The output does not normally require oversight by a human. Oversight
is not normally required for tasks labeled T4 because the consequences for
failure or inaccuracy are small for this task, human judgment is not neces-
sary to complete this task, and generative models can consistently perform
this task with very high quality.

T3 High Automation Exposure A class of tasks where, in most contexts
in which this task is currently performed by a human, Generative AI could
complete 90-100% of the components of the task when prompted, but the
output requires oversight from a human. Oversight is normally required
because the consequences for failure or inaccuracy are significant for this
task, human judgment is necessary to complete this task, and/or genera-
tive models cannot perform all aspects of this task with high quality con-
sistently. These tasks rely almost exclusively on the processing of digital
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information, but human judgment is needed to ensure that any digital out-
puts from Generative AI are high enough quality to be acceptable for the
particular context.

T2 Moderate Automation Exposure A class of tasks where, in most con-
texts in which this task is performed by a human, Generative AI could
complete between 50%-90% of the components of the task at high quality.
These tasks normally rely heavily on the processing of digital information,
but a significant portion of the task also involves actions that Generative
AI cannot perform with high quality. These tasks require at least some
human action beyond just double-checking generative model outputs (such
as interpretation, judgment, human-to-human communication, or physical
actions).

T1 Low Automation Exposure A class of tasks where, in most contexts
in which this task is performed by a human, Generative AI could complete
between 0%-50% of the components of the task at high quality. These tasks
normally rely only partially on the processing of digital information, while
the majority of the task involves actions that Generative AI cannot per-
form with high quality. A majority of the actions that need to be taken to
complete this task require a human to perform the action.

Definitions

High quality means someone receiving or reviewing the output would not
be able to tell the difference between whether it came from Generative AI or
a human. For tasks that require a lot of interaction during the completion
of the task (e.g. meetings, negotiations), high quality means the people you
were interacting with either would not know or would not care that they
were interacting with Generative AI.

Digital information or information that can easily be expressed dig-
itally includes but is not limited to text, audio, images, video, PDFs, books,
code, and data.

Annotation Examples

Occupation: Special Education Teachers, Preschool

Task: Develop individual educational plans (IEPs) designed to promote stu-
dents’ educational, physical, or social development.

Automation score (T0/T1/T2/T3/T4): T1
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Explanation: GenAI drafts SMART goals, accommodations, progress-mo-
nitoring templates, and meeting summaries well. But “develop” in practice
includes assessments, legal compliance under IDEA, multi-party negotia-
tion, and parent/team consensus—high-stakes, non-digital work that goes
far beyond checking model output. The human does a majority of the task
through judgment and human-to-human interaction → <50% automat-
able at high quality.

Occupation: Construction and Building Inspectors

Task: Inspect and monitor construction sites to ensure adherence to safety
standards, building codes, or specifications.

Automation score (T0/T1/T2/T3/T4): T1

Explanation: T1 is right because authority, on-site judgment, and safety
liability are inherently human/embodied. Modern AI (CV on photos/video,
drone logs, code lookups) can pre-screen and draft reports, but the core task
is physical inspection plus enforcement. The given explanation is dated—
codes are digital; the real blockers are embodiment, accountability, and legal
sign-off.

Occupation: Food and Tobacco Roasting, Baking, and Drying Machine
Operators and Tenders

Task: Dump sugar dust from collectors into melting tanks and add water
to reclaim sugar lost during processing.

Automation score (T0/T1/T2/T3/T4): T0

Explanation: The task as phrased is purely physical and you’ve restricted
tools to what’s on a laptop. GenAI can’t perform any part of this task (not
“write SOPs” but do the dumping). If the task were broadened to “optimize
reclaim procedure / generate checklists,” exposure would rise, but for the
literal action it’s T0.

Occupation: Interpreters and Translators

Task: Refer to reference materials (dictionaries, lexicons, encyclopedias,
computerized terminology banks) as needed to ensure translation accuracy.

Automation score (T0/T1/T2/T3/T4): T4

Explanation: GenAI can autonomously retrieve, disambiguate, and com-
pile authoritative references and recommended terms with citations and
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confidence scores across most high-resource language pairs. The subtask is
fully digital, consistent, and does not normally require human oversight.

Occupation: Electronics Engineer

Task: Prepare documentation containing information such as confidential
descriptions or specifications of proprietary hardware or software, product
development or introduction schedules, product costs, or information about
product performance weaknesses.

Automation score (T0/T1/T2/T3/T4): T3

Explanation: Given structured inputs (requirements, BOMs, test data),
GenAI can generate nearly all documentation variants (design specs, DFMEA
summaries, release notes, red-team risk write-ups), maintain traceability
tables, and enforce style guides. Consequences and confidentiality mean
human review is required, but the model can complete 90–100% of com-
ponents in digital form.

Occupation: Advanced Practice Psychiatric Nurse

Task: Write prescriptions for psychotropic medications as allowed by state
regulations and collaborative practice agreements.

Automation score (T0/T1/T2/T3/T4): T3

Explanation: If the medication choice is already clinically decided, GenAI
can populate eRx fields, check interactions/contraindications, map to for-
mularies, and draft prior-auth notes—essentially all digital components.
High-stakes legality and safety mandate human sign-off, but execution
is 90–100% automatable with oversight. (If the task were “evaluate and
decide what to prescribe,” exposure would drop; the annotation’s verb is
“write.”)

Now, apply the above rubric to the example below:

Occupation: [Occupation]

Task: [Occupational task]

Automation score (T0/T1/T2/T3/T4):

Explanation:

Below, we highlight the substantive changes for prompts related to Smart
Robots (other than pure wording changes that replace “generative AI” with
“smart robots”):
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T Automation Rubric

[...]

Rubric

A smart robot is an AI-powered, often-mobile machine designed to au-
tonomously execute one or more physical tasks. These tasks may rely on,
or generate, machine learning, which can be incorporated into future activ-
ities or support unprecedented conditions. Smart robots can be split into
different types based on the tasks/use cases, such as personal, logistics and
industrial.

[...]

Definitions

[...]

Annotation Examples

Occupation: Special Education Teachers, Preschool

Task: Develop individual educational plans (IEPs) designed to promote stu-
dents’ educational, physical, or social development.

Automation score (T0/T1/T2/T3/T4): T1

Explanation: A robot can assist with data capture (sensor-based observa-
tions), simple assessments, and pre-filling forms, but developing IEPs re-
quires pedagogical judgment, legal compliance, and multi-party collaboration—
most of which remains human.

Occupation: Construction and Building Inspectors

Task: Inspect and monitor construction sites to ensure adherence to safety
standards, building codes, or specifications.

Automation score (T0/T1/T2/T3/T4): T3

Explanation: Robots (drones/UGVs) with CV/LiDAR can navigate, cap-
ture, measure, compare against BIM/specs, and draft reports ( 90–100% of
components). Human oversight is needed for code interpretation, contrac-
tor communication, and legal sign-off.

Occupation: Food and Tobacco Roasting, Baking, and Drying Machine
Operators and Tenders

Task: Dump sugar dust from collectors into melting tanks and add water
to reclaim sugar lost during processing.
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Automation score (T0/T1/T2/T3/T4): T4

Explanation: Repetitive material handling and dosing in a controlled plant
are fully automatable with robotic manipulation, sensing, and safety inter-
locks.

Occupation: Interpreters and Translators

Task: Refer to reference materials (dictionaries, lexicons, encyclopedias,
computerized terminology banks) as needed to ensure translation accuracy.

Automation score (T0/T1/T2/T3/T4): T4

Explanation: Purely digital retrieval/matching. A robot running GenAI
can autonomously consult termbases, disambiguate senses, enforce glos-
saries, and return citations without routine human oversight.

Occupation: Electronics Engineer

Task: Prepare documentation containing information such as confidential
descriptions or specifications of proprietary hardware or software, product
development or introduction schedules, product costs, or information about
product performance weaknesses.

Automation score (T0/T1/T2/T3/T4): T3

Explanation: With structured inputs (requirements, BOMs, test data), a
robot+GenAI stack can draft nearly all documents and maintain traceabil-
ity. Human review remains for accuracy, confidentiality, and compliance.

Occupation: Advanced Practice Psychiatric Nurse

Task: Write prescriptions for psychotropic medications as allowed by state
regulations and collaborative practice agreements.

Automation score (T0/T1/T2/T3/T4): T3

Explanation: A robot can complete the eRx workflow (populate fields, check
interactions, format to payer formularies, draft prior auth), but human au-
thorization/clinical judgment is required; oversight is routine.

Occupation: Warehouse Workers

Task: Move inventory from receiving dock to storage locations using hand
trucks or pallet jacks.

Automation score (T0/T1/T2/T3/T4): T4

Explanation: AMRs/AGVs integrated with WMS can autonomously trans-
port pallets/totes end-to-end in structured warehouses.
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Occupation: Assembly Line Workers

Task: Attach components to products moving along assembly line accord-
ing to specifications.

Automation score (T0/T1/T2/T3/T4): T4

Explanation: In the typical modern assembly context, robots can complete
all attachment steps with consistently high quality. Errors are caught by
automated fail-safes/poka-yoke and do not require routine human oversight;
technicians intervene only on rare exceptions or maintenance, which is out-
side the task scope.

Now, apply the above rubric to the example below:

[...]

Below, we highlight the substantive changes for prompts related to Autonomous
Vehicles (other than pure wording changes that replace “generative AI” with
“autonomous vehicles”):

T Automation Rubric

[...]

Rubric

An autonomous vehicle is one that can drive itself from a starting point to
a predetermined destination in “autopilot” mode using various in-vehicle
technologies and sensors, including adaptive cruise control, active steering
(steer by wire), anti-lock braking systems (brake by wire), GPS navigation
technology, lasers and radar.

[...]

Definitions

[...]

Annotation Examples

Occupation: Special Education Teachers, Preschool

Task: Develop individual educational plans (IEPs) designed to promote stu-
dents’ educational, physical, or social development.

Automation score (T0/T1/T2/T3/T4): T0
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Explanation: Purely cognitive/interpersonal; no driving component for an
AV to perform.

Occupation: Construction and Building Inspectors

Task: Inspect and monitor construction sites to ensure adherence to safety
standards, building codes, or specifications.

Automation score (T0/T1/T2/T3/T4): T1

Explanation: An AV can transport the inspector to/around sites, but the
inspection, judgments, and sign-off remain human; AV contributes a mi-
nority transport component.

Occupation: Veterinarians

Task: Drive mobile clinic vans to farms so that health problems can be
treated or prevented.

Automation score (T0/T1/T2/T3/T4): T2

Explanation: AVs can perform most road driving to rural sites, but last-
meters access (gates, unmarked farm roads, ad-hoc parking/turnarounds)
and dynamic on-site constraints often require human intervention. Over-
all, the AV covers a large portion of the task, but not reliably ≥90% across
most contexts.

Occupation: Correctional Officers and Jailers

Task: Drive passenger vehicles and trucks used to transport inmates to
other institutions, courtrooms, hospitals, and work sites.

Automation score (T0/T1/T2/T3/T4): T3

Explanation: On-road transport between facilities is highly automatable;
AVs can execute routing and vehicle control end-to-end. However, the
context is high-stakes (security protocols, perimeter handoffs, incident re-
sponse), so human oversight remains standard even if the driving compo-
nent is largely automated.

Occupation: Taxi Drivers and Chauffeurs

Task: Test vehicle equipment, such as lights, brakes, horns, or windshield
wipers, to ensure proper operation.

Automation score (T0/T1/T2/T3/T4): T4
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Explanation: AV platforms can autonomously run pre-trip self-checks and
diagnostics (actuate systems, read sensors/OBD, verify via cameras), pro-
ducing pass/fail results without routine human oversight in most contexts.

Now, apply the above rubric to the example below:

[...]

D.2.3 Simplification of Tasks

The simplification channel assesses how technologies change the skill require-
ments for performing tasks. We ask GPT-4o to evaluate skill levels both with-
out and with technology access, allowing us to measure the change in required
skills. The prompt asks for both values simultaneously. For example, with
Generative AI:

The occupation [Occupation] contains the task: [Occupational task].

Technology name: Generative AI

Technology description: Generative AI refers to AI techniques that learn
a representation of artifacts from data, and use it to generate brand-new,
unique artifacts that resemble but don’t repeat the original data. These ar-
tifacts can serve benign or nefarious purposes. Generative AI can produce
totally novel content (including text, images, video, audio, structures),
computer code, synthetic data, workflows and models of physical objects.
Generative AI also can be used in art, drug discovery or material design.

What level of skill in [Skill] is needed to perform the task in this occupation
well WITHOUT access to Generative AI? What level of skill in [Skill] is
needed to perform the task in this occupation well WITH access to Genera-
tive AI?

Provide the answers on a scale from 1 to 7, where 2 means [Skill Level
2 Anchor], 4 means [Skill Level 4 Anchor], and 6 means [Skill Level 6
Anchor].

Output only two integers separated by a comma, valued between 1 and
7. The first integer is the skill level WITHOUT access to Generative AI,
the second integer is the skill level WITH access to Generative AI. Do not
output anything else.
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All 35 O*NET skills and 19,530 O*NET tasks are evaluated independently.
Skill level anchors and task descriptions are drawn from O*NET as discussed
in Appendix D.1.

This approach allows us to measure both the baseline skill requirements rτ

and the technology-adjusted requirements r′τ in a single API call for each skill
and task, improving consistency and reducing potential discrepancies from
separate queries. The difference between these two values captures the sim-
plification effect of the technology on task skill requirements.
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