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Abstract

This paper studies the distributional effects of two general purpose

technologies: steam and electric power. Using newly collected historical

data from the US and the Netherlands and plausibly exogenous variation

in adoption, I show that steam power increased firm sizes and top income

and wealth inequality, while electric power had opposite effects. These ef-

fects reveal a key link between technology and inequality: scale bias—the

extent to which technical change increases returns to scale. Steam entailed

high fixed costs and was mainly adopted by large firms, whereas electricity

was small-scale-biased. A model of occupational and technological choice

illustrates how large-scale-biased technical change raises top income in-

equality by concentrating entrepreneurial income.
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1 Introduction

Income and wealth inequality have significantly increased in many countries in
recent decades. Between 1980 and 2014, top-decile incomes in the United States
rose more than twice as fast as below-median incomes (Piketty et al., 2018).

Skill-biased technical change is a frequently cited explanation for increases
in wage inequality (Katz and Murphy, 1992; Krusell et al., 2000; Violante, 2008;
Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018, 2022). But wages are
not the only source of income. For those at the top of the distribution, business
income is the dominant source of income, most of it accruing to entrepreneurs
who own large shares of their own business (e.g., Smith et al., 2019; Kopczuk
and Zwick, 2020; Atkeson and Irie, 2022).

This paper studies the causal effects of two of the most important general
purpose technologies in history—steam and electric power—and lays out how
scale-biased technical change affects inequality through entrepreneurial income.
Scale bias is the extent to which technical change increases the returns to scale.
Due to strong differences in fixed costs, steam was large-scale-biased, while
purchased electric power was small-scale-biased. As a result, I find that steam
and electric power had different effects. First, steam power increased estab-
lishment sizes and decreased entrepreneurship, while electric power spurred
small-scale entrepreneurship. Second, as steam power increased the relative
productivity of entrepreneurs with large-scale businesses, their profits rose rel-
ative to wages, while electric power disproportionately increased wages. Third,
the concentration of business income induced by the adoption of steam power
increased top income and wealth inequality. Electric power reduced inequality.
I provide evidence that the distributional effects are driven by business income.

I develop a tractable general equilibrium framework that rationalizes these
findings. In the model, households choose to be an entrepreneur or work for
wages depending on their productivity. Entrepreneurs choose a technology—
defined by their marginal and fixed costs—and hire workers. I use the model to
study the effects of the introduction of different types of technologies, formally
define scale bias, and provide the technological conditions that lead to large-
and small-scale-biased technical change. I show that large-scale-biased tech-
nical change lowers entrepreneurship rates and thus leads to larger firms on
average. With fewer and larger firms, top entrepreneurs are capturing a larger
share of the profits, increasing top income inequality.
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The case of steam and electric power provides a unique opportunity to study
how scale affects inequality. First, their adoption was sufficiently widespread
and transformative to have a meaningful impact on the overall economy. Sec-
ond, their adoption is well documented. Third, they were similar in their capa-
bility and purpose. Fourth, their cost structure meant that they induced tech-
nical change with strongly different scale bias.1 The annualized cost of a 50-
horsepower (hp) steam engine was roughly equivalent to three to four yearly
unskilled workers. In contrast, the fixed cost of running an electric motor by
purchased electricity of comparable capacity was negligible. As a result, adop-
tion patterns differed across firm sizes: large establishments were more likely to
use steam power, while electric motors powered by purchased electricity were
adopted more by smaller establishments.

The power source—self-generated or purchased—was the key technological
feature underlying the marginal vs. fixed cost trade-off in steam and electric
power. Factories using electricity had two options: purchase electricity from a
power plant or generate it on-site, typically using steam engines. Self-generated
energy entailed higher fixed but lower marginal costs. Importantly, the energy
source can be conceptually and empirically distinguished from the tools used
to convert this energy into motion such as electric motors. Goldin and Katz
(1998) show that electric motors (not electric power) increased wage inequality
by facilitating a shift to continuous process and batch methods. To distinguish
the role of scale from skill, I only use variation in the relative cost of using self-
generated and purchased electricity, not in the cost of using electric motors.
Crucially, the argument that electric motors favored skilled workers applies re-
gardless of whether it is driven by purchased or self-generated electricity.

A first empirical contribution of this paper is a large new database on adop-
tion of the two technologies, firm sizes, and inequality collected and digitized
from various archival sources from the United States and the Netherlands. To
study the effects of scale-biased technical change on inequality, I collected unique
microdata on wealth from the Netherlands over the course of industrializa-
tion. I digitized these handwritten data using state-of-the-art computer vision
technologies. The resulting data include information on wealth of hundreds
of thousands of decedents between 1878 and 1927 in five major provinces in

1Steam became the dominant power source in manufacturing in the second half of the 19th

century. Electric power began to be widely used around 1900, and in the first half of the 20th

century purchased electricity and steam power (used directly or to self-generate electricity)
were substitutes for each other in providing power to the factory.
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the Netherlands. To my knowledge, it is the largest such dataset in any coun-
try covering the Industrial Revolution (which happened later in the Nether-
lands) both in size and geographic scope. For the US, I draw on the Census of
Manufactures that provides information such as the number of establishments,
employment, value added, profits, wages, and power adoption by state and
industry. I digitize and compile these data for each decade from 1850 to 1950.

The first main result is that steam power caused establishment sizes to in-
crease, while electric power decreased them. To identify these effects, I use
variation in natural resources across the United States that affected the costs of
using the technologies. Specifically, I use access to historical coal resources and
hydropower potential as instruments for steam power and electricity adoption,
respectively.2 I find that high-coal access states experienced a growth in estab-
lishment sizes relative to 1850, when steam started to be adopted in US man-
ufacturing. In contrast, after the introduction of electric power around 1900,
high-hydropower states experienced a decrease in establishment sizes (while
no effect is estimated before 1900). Using this variation, I estimate the effect
of a 1% increase in steam capacity in horsepower to be a 1.1% increase in firm
size. For electric power, I estimate this elasticity to be -0.4. In support of the
exclusion restriction, I find that the effects of hydropower and coal resources
were limited to industries that used power. Lastly, I show that the estimated
effects are almost identical when performing the analysis on the city-industry
level (rather than state-industry).

Second, I find that large-scale-biased technological change like steam power
increases the ratio of average profits to wages, whereas small-scale-biased change
like electric power disproportionately increases wages. The effects are quanti-
tatively similar to those on the firm size, as predicted by the theory. To estimate
these effects on the profit-wage ratio, I use the same methodology as used for
the effects on firm sizes.3 Through the lens of the model, these effects capture
both a selection effect, that the remaining entrepreneurs are on average more
productive, and a causal effect, that profits of top entrepreneurs increase more
than workers’ wages.

I then provide evidence that the profit distribution among firms matters for

2Various authors have used hydropower potential as an instrument for electricity adoption
(e.g., Leknes and Modalsli, 2020; Gaggl et al., 2021). Data to construct the instruments are from
the Coal Resources Data System (coal resources) and Young (1964) (hydropower potential).

3I compute profits in the Census of Manufactures using data on output, raw material costs,
labor costs, capital stock, and other expenses.
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inequality among households. How much profits are reflected in the personal
income distribution depends on the concentration of firm ownership. Even to-
day, entrepreneurs hold significant shares of their own businesses (Peter, 2021).
Concentration tends to be near perfect in private businesses (e.g., Smith et al.,
2019) and even the average Fortune 500 firm is 18 percent owned by its found-
ing family (Anderson and Reeb, 2003).4 Correspondingly, I find that prof-
its are highly predictive of inequality. In 1870, US states and industries with
higher profit-wage ratios (and larger firm sizes) were also characterized by sig-
nificantly more inequality between entrepreneurs and workers and higher top
wealth shares, with correlations around 0.7.5 The effects on profit-wage ratios,
coupled with the correlation between profit-wage ratios and inequality, already
offer evidence that scale-biased technical change affects inequality in the way
predicted by the theory. To test the effects on inequality directly, I turn to the
newly compiled database on wealth during Dutch industrialization.

Using the new Dutch wealth data, I establish the third and last main result:
that steam and electric power had opposite effects on top wealth inequality.
At the municipal level, steam power increased wealth inequality, while electric
power decreased it. For identification in this context, I exploit a municipality’s
exposure to the technologies based on their industrial composition in 1816, long
before industrialization.6 The estimated effects on wealth inequality are sizable:
a one standard deviation increase in steam power adoption increased the top
1% wealth share by around 4 p.p. (relative to an average of 21 percent).

Related literature. First, this paper contributes to our understanding of tech-
nologies’ effect on income and wealth inequality by empirical evidence and the-
ory on the role of scale-biased technical change. The theory is most directly con-
nected to the Schumpeterian model of top income inequality (Jones and Kim,
2018). In this model, the Pareto tail of income is a function of entrepreneurs’ re-
turn to effort. This paper pairs the theory of scale bias with a study of the causal
effects of two general purpose technologies to show how technical change af-
fects the returns to entrepreneurial talent, and hence, top income inequality.

I also contribute causal evidence to a literature that relates increased firm
4The founding family of Walmart, the largest company in the world by revenue, owns 45%

of its shares (as estimated by Forbes). Goldsmith et al. (1940) covers the historical case.
5This result is obtained by combining state-industry data from the Census of Manufactures

with microdata on wealth in the US 1870 Census, the last census that recorded wealth.
6Since the Netherlands had neither hydropower nor (much) coal, the same instrument can

not be used there.
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concentration to a move toward high fixed cost technologies (e.g., Poschke,
2018; Hsieh and Rossi-Hansberg, 2023; Kwon et al., 2024). Intangible inputs
such as software have been posited as an example of this (Brynjolfsson et al.,
2008; Lashkari et al., 2024; De Ridder, 2024). Since most modern technologies
differ in many ways other than their cost structure, it is difficult to isolate the
role of specific technological characteristics. This paper studies two technolo-
gies that were otherwise similar, allowing to distinguish the role of fixed costs.

This paper also relates to a large literature on the economic history of the
adoption of steam and electric power. It specifically relates to a literature on the
differential costs and adoption of the two technologies in manufacturing (for
steam power, see, e.g., Atack (1979); Hunter (1979, 1985); Atack et al. (2008); for
electric power, see, e.g., Du Boff (1967, 1979)). Hornbeck et al. (2024) show that
the adoption of steam was hampered by lock-in effects of water-powered in-
cumbents. This paper also relates to the literature on the economic effects of the
two technologies (for steam power, see, e.g., Kim (2005); Atack et al. (2019); for
electric power, see, e.g., Fiszbein et al. (2020)).7 This paper focuses on the distri-
butional effects of the adoption of steam and electric power in manufacturing
through the lens of the theory of scale-biased technical change.

Lastly, this paper speaks to the patterns of inequality during industrializa-
tion. Kuznets (1955) argued that income inequality rises in the early stage of
industrialization due to a shift from agricultural to the more unequal manufac-
turing sector. Kuznets (1955) explicitly related inequality to scale: “inequalities
[in manufacturing] might be assumed to be far wider than those for the agri-
cultural population which was organized in relatively small individual enter-
prises.” This paper provides a theoretical foundation and empirical evidence
for that argument.

2 The Scale Bias of Steam and Electric Power

This section provides a brief history of power use and lays out the relevant
technological and economic features of steam and electric power.

Figure 1 illustrates the history of power use in US manufacturing by type of
“primary power”.8 In the second half of the 19th century, steam power grad-

7Further, it contributes to a literature on the effects of electrification more generally such as
Vidart (2024) on the rise of female labor force participation.

8The prime mover refers to the first machine in the power chain. For example, if electricity
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FIGURE 1: The evolution of power in the United States
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Notes: Purchased electricity refers to motors driven by purchased electricity. Those driven by
self-generated energy are counted under steam. Sources: For steam engines and waterwheels up
to 1860: (Atack, 1979) (number) and (Atack et al., 1980, p. 285) (average size); for employment
up to 1860, Census of Manufactures 1860; for all other data: Census of Manufactures 1939.

ually replaced waterwheels. Electricity began to be adopted around 1900. By
1930, purchased electricity had become the dominant source of power. While
steam remained an important source of power, it was increasingly used to gen-
erate electricity rather than to drive machinery directly: by 1940, two-thirds of
non-electric power was driving generators (Du Boff, 1979).9

The evolution in power use was not scale-neutral because steam power gen-
eration exhibits steep economies of scale. Figure 2 shows the cost per kilowatt-
hour (kWh) by total energy requirement.10 The average cost per kWh of a 5 hp
engine was more than four times that of a 100 hp engine. There are two main
reasons for these economies of scale. First, the fixed labor costs of operating the
engine increased much less than proportionally with capacity. Second, the en-
ergy efficiency of larger engines was significantly greater (see also Atack, 1979;
Devine, 1983).

The costs of steam power were, besides scale-dependent, sizeable. For in-
stance, the annualized cost of purchase, renewal, maintenance, operation, and
fuel of a 50 hp steam engine was around $2900 (in 1874$) (Emery, 1883), more
than seven times the yearly unskilled wage. In other words, from the cost of
running an average-sized steam engine, one could hire seven workers.11

is purchased, the electric motor is the prime mover. If electricity is generated on-site by a steam
engine, the engine is the prime mover and the electric motor is secondary.

9Adoption patterns in the Netherlands were similar, although steam power was adopted
considerably later there than in the US (Blanken and Lintsen, 1981).

10The steam cost data are derived from Emery (1883) and Saitzew (1914). The electricity
price schedule is estimated using microdata from the 1929 Census of Manufactures digitized
by Vickers and Ziebarth (2018). In Appendix E, I detail the sources and computations.

11Based on the assumption that the worker and the steam engine operate 309 days per year,
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FIGURE 2: Cost of steam and electric power by capacity (100hp = 1)
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Notes: Steam cost data are derived from Emery (1883); Saitzew (1914) for 1874 and 1914, resp.
Electricity prices at different levels of use are computed from micro-samples of the 1929 Census
of Manufactures (Vickers and Ziebarth, 2018). Appendix E contains further details.

The cost of using purchased electricity was considerably less sensitive to
scale. Figure 2 shows that the scale-gradient was considerably smaller than
for steam.12 As electricity became cheaper, the level of energy use at which
purchased electricity could compete with self-generation increased. As the
break-even point increased, the power cost advantage of large establishments
decreased, earning small establishments “a new lease on life” (Du Boff, 1967).
Based on the data underlying Figure 2 and the contemporaneous cost of coal,
electricity, and labor, I estimate the break-even point to be between 50 and 100
hp in the Netherlands in 1930.

The adoption rates by plant size reflect the considerations above. Figure
A.1a shows that large plants were more likely to adopt steam engines, as doc-
umented before by Atack et al. (2008). In contrast, Figure A.1b indicates that
electric power was almost uniformly adopted across the establishment size dis-
tribution. However, small firms tended to rely solely on purchased electricity
while large firms were more likely to use self-generated electricity.

3 A Model of Scale-Biased Technical Change

In this section, I introduce a tractable general equilibrium model of occupa-
tional and technological choice. Households choose between working for wages

10 hours per day. The daily wage of an unskilled worker in 1874 was $1.29 (Abbott, 1905).
12The reason it was not completely independent of scale is that utilities tended to offer some

discount to large consumers (see Appendix E for details).
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or being an entrepreneur. Entrepreneurs choose which production technol-
ogy, defined by their marginal and fixed costs, to use. The model is simple
and its main innovation lies in the introduction of occupational and techno-
logical choice and the analysis of the impact of technological changes on these
choices. The framework is otherwise similar to Melitz (2003). I define scale-
biased technical change formally. The model predicts that large-scale-biased
technical change such as steam power increases firm sizes, inequality between
workers and entrepreneurs, and overall top income inequality. Small-scale-
biased technical change like electric power has the opposite effects.

3.1 Setup

There is a continuum of households with unit measure who differ in their en-
trepreneurial productivity ψ. I assume that ψ has a density function f (·) with
semi-infinite support on R+, i.e., {ψ | f (ψ) > 0} = [ψm, ∞) for some ψm ≥ 0.13

In a first stage, each household decides whether to be a worker or an en-
trepreneur (Lucas, 1978). As an entrepreneur their profits π(ψ) depend on their
entrepreneurial productivity. As a worker, they earn the equilibrium wage w.

An entrepreneur chooses, in a second stage, from an exogenous set of avail-
able production technologies T ≡ {t1, . . . , tJ}. Each technology tj ∈ T is a tuple
{αj, κj} where αj is a parameter that affects marginal labor cost and κj > 0 is its
fixed labor cost.14 Given technology tj and entrepreneurial productivity ψ, the

production function is yj(l | ψ) =
ψ max{l−κj,0}

αj
where l is total labor input. T

does not contain trivially dominated technologies: if tj, tk ∈ T and αj < αk, then
κj > κk.15 Technologies are ordered by their fixed costs: κ1 < · · · < κJ .

Finally, in stage three, after adopting technology j, entrepreneurs compete
monopolistically and maximize profits given their productivity ψ, yielding πj(ψ).
Households substitute the goods produced by the entrepreneurs with constant
elasticity of substitution σ (Dixit and Stiglitz, 1977; Melitz, 2003). That is, house-
hold utility is increasing in Y

σ−1
σ ≡

∫
ψ∈Ψ y(ψ)

σ−1
σ dψ. The demand for good

ψ is thus y(ψ) = YPσ p(ψ)−σ where p(ψ) is the price of good ψ and P1−σ ≡
13To derive a closed-form equilibrium solution, I will later assume that ψ ∼ Pareto(ψm, ξ).
14This can be seen as a generalization of the binary technology choice in (Yeaple, 2005; Bus-

tos, 2011) who are concerned with the connection between trade and technology adoption and
do not consider occupational choice.

15This assumption does not affect any equilibrium outcome as such trivially dominated tech-
nologies would not be adopted.
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∫
ψ∈Ψ p(ψ)1−σdψ. Hereafter, I use the normalization that P = 1.

In section 3.2, I characterize optimal behavior by backward induction.

3.2 The household’s problem

Stage 3: Profit maximization. Profit maximization conditional on technology
j and productivity ψ yields the standard constant-markup pricing rule pj(ψ) =
αjw
ρψ where ρ ≡ σ−1

σ which yields (conditional) profits πj(ψ) equal to

πj(ψ) =
Y
σ

(
ρψ

αjw

)σ−1

− κjw. (1)

Stage 2: Technology adoption. An entrepreneur can choose from any of the J
technologies in T. She adopts the technology j that yields highest profits so the
profits of an entrepreneur with productivity ψ are π(ψ) = maxj∈{1,...,J}{πj(ψ)}.
An important implication of the conditional profit function in (1) is that more
productive entrepreneurs choose technologies with higher fixed costs. To see
this, note that for an entrepreneur with productivity ψ, the difference in profits
between technologies tj and tk are:

∆πjk(ψ) ≡ πj(ψ)− πk(ψ) =
Y
σ

(
ρψ

w

)σ−1 (
α1−σ

j − α1−σ
k

)
− (κj − κk)w. (2)

Recall that since j > k, κj > κk and αj < αk. It then follows from the expres-
sion that ∆πjk(ψ) is strictly increasing in ψ. That is, the more productive an
entrepreneur is, the larger their profits under technology j (higher fixed, lower
marginal cost) relative to technology k (lower fixed, higher marginal cost).

Stage 1: Occupational choice. After observing their entrepreneurial produc-
tivity ψ, each household decides on their occupation. Naturally, they decide
on entrepreneurship if and only if the profits exceed wages: π(ψ) ≥ w. Since
π(ψ) is strictly increasing and continuous in ψ, there is a unique ψ̄ > ψm such
that a household chooses entrepreneurship iff ψ ≥ ψ̄. Further, each technology
j has itself a cut-off ψ̄j above which profits are higher than the wage, defined
by π

(
ψ̄j
)
= w. Since a household becomes an entrepreneur iff at least one

technology yields profits exceeding wages, the occupational choice decision is
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governed by the technology with the lowest threshold. Therefore,

ψ̄ = min
j∈1,...,J

ψ̄j = min
j∈1,...,J

{
αj(1 + κj)

1
σ−1

} ( σ

Y

) 1
σ−1 w

σ
σ−1

ρ
(3)

and the marginal entrepreneur uses the technology for which the marginal and
fixed costs are such that αj(1 + κj)

1
σ−1 is lowest.

Figure A.2 visualizes the profit function π(ψ) and the optimal occupational
and technological choice.

3.3 Competitive equilibrium

The competitive equilibrium is defined by three conditions. First, occupational
and technological choice must be income maximizing. Second, labor demand
equals labor supply. Third, goods prices must be consistent with wages. I pro-
vide a formal definition of the competitive equilibrium in Appendix C.1.

I first characterize which technologies are adopted by a strictly positive mea-
sure of entrepreneurs in equilibrium. A given technology is adopted if there is
a set of households for which i) it is profit-maximizing to produce with that
technology and 2) optimal profits exceed wages. Proposition A.1 (Appendix
C.2) states the technological conditions under which this is true. It first shows
that the technology with the lowest threshold ψ̄j is adopted (by the marginal
entrepreneur). Second, the technology with the lowest marginal cost is also
adopted, regardless of its fixed cost.16 Only one technology is adopted iff it has
both the lowest entry threshold and lowest marginal cost. The proposition also
covers conditions under which more than two technologies are adopted.

Having defined the equilibrium in general, in order to get more concrete
results, I assume from now on that the distribution of productivity ψ is Pareto.
With this assumption, the equilibrium of the model has closed-form analytical
solutions that I lay out in Proposition A.2 (Appendix C.3). Proposition A.1 and
A.2 together fully characterize the competitive equilibrium. In Proposition A.3,
I show that the competitive equilibrium is socially optimal.

16Since the gains from lowering marginal cost are strictly increasing in productivity and the
productivity distribution is unbounded, the gains from lowering marginal cost are unbounded.
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3.4 Scale-biased technical change and its implications

Having characterized the equilibrium, I now consider the effect of technical
change. I define technical change as an addition of a new technology, say tnew,
to the existing technology set Told such that Tnew = Told ∪ {tnew} and assume
that it is adopted, i.e., tnew ∈ T∗

new.

From there, I call technical change large-scale-biased if it only increases pro-
ductivity on a sufficiently large scale. I provide a formal definition below.

Definition (Scale-biased technical change). The adoption of a new technology
tnew constitutes large-scale-biased technical change relative to an existing adopted
technology set T∗

old for firm ψ iff ∃l̄ > 0 such that ytnew (l | ψ) > maxj∈T∗
old

yj (l | ψ)

for all l > l̄ and ytnew (l | ψ) ≤ maxj∈T∗
old

yj (l | ψ) for all l ≤ l̄. It is small-scale-
biased iff ∃l̄ > 0 such that ytnew (l | ψ) ≤ maxj∈T∗

old
yj (l | ψ) for all l ≥ l̄ and

ytnew (l | ψ) > maxj∈T∗
old

yj (l | ψ) for all l < l̄ for which maxj∈T∗
old

yj (l | ψ) > 0.

This definition is related to the notion of returns to scale. If technical change
is large-scale-biased, there exists l > 0, λ > 1 such that scaling the inputs from l
to λl increases output more with the new technology than without it. Similarly,
if it is small-scale-biased, decreasing inputs decreases output less than before
for some l and λ ∈ (0, 1).

Also note that the definition allows for technical change to be large-scale-
biased for some entrepreneur ψ, but not for others. However, when ψ reflects
a multiplicative productivity term like in the model above—i.e., yj(l | ψ) =

ψỹj(l) for some ỹj(·)—technical change is large- or small-scale-biased either for
all ψ or for no ψ.

Under the production function in the model above, it is straightforward to
characterize the type of technical change that leads to scale bias. Large-scale-
biased technical change occurs if and only if the new technology has lower
marginal costs than those of any previously adopted technology but does not
have the lowest fixed costs.17 On the other hand, the adoption of a new technol-
ogy is small-scale-biased iff it has lowest fixed costs, but not lowest marginal
costs.18

17Proof: to increase productivity at large scales, it must have lower marginal costs. To not
increase productivity at smaller scales, it cannot have the lowest fixed costs.

18Proof: to increase productivity at all of the lower scales, it must have lowest fixed cost. To
not increase productivity at higher scales, it must not have lowest marginal cost.
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Using Propositions A.2 and the definition of scale-biased technical change, I
generate three main predictions from the theory.

Proposition 1 (Theoretical implications of scale-biased technical change). Sup-
pose that the productivity distribution is Pareto, f (ψ) = ξψ

ξ
mψ−ξ−1 with ξ > σ − 1,

that σ > 2, and that T∗
new = T∗

old ∪ {tnew} (the new technology is adopted alongside
the previously adopted technologies). Then, large-scale-biased technical change

(a) increases the average firm size as measured by employment;

(b) increases income inequality between entrepreneurs and workers;

(c) increases the income share of the top k% for any k below some k̄ ∈ (0, 100).

Small-scale-biased technical change has the opposite effects.

Proof of Proposition 1. See Appendix C.5.

The remainder of the paper is devoted to testing the theoretical predictions
above for the case of steam and electric power.

4 Data Construction

In this section, I discuss the sources, digitization, and construction of the data
used in the empirical analysis. A key contribution is the collection and digitiza-
tion of microdata on wealth of hundreds of thousands of people in the Nether-
lands during the period of steam and electric power adoption (≈ 1850 − 1950).
In addition, I digitized and compiled manufacturing data for the same period
for both the United States and the Netherlands.

4.1 Netherlands

Microdata on wealth: 1879-1927. The data on wealth derive from the inheri-
tance tax administration. The original source files are printed estate tax forms
that were filled by hand indicating a decedent’s name, place of residence and
death, date of death, and importantly, the value of their estate. I collected and
digitized these data for individuals who died in selected Dutch provinces be-
tween 1879 and 1927 and were subject to inheritance taxation. I included all
provinces for which the source files were available online as scanned images:
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Noord-Holland, Noord-Brabant, Gelderland, Overijssel, and Zeeland. In 1900,
these five provinces contained 52 percent of the population (Ekamper et al.,
2003, p. 29) and include the capital city, Amsterdam.

The inheritance tax was introduced in 1818 and all the tax returns up to 1927
are publicly available in regional archives in the Netherlands. Before 1878, the
inheritances were only subject to tax if not all recipients were descendants in
the direct line. After 1878, all inheritances above 1000 Dutch guilders (ƒ) were
taxed, and some inheritances between ƒ300 and ƒ1000. This meant that a con-
siderably larger share of decedents was assessed than in other countries (see
also Toussaint et al., 2022; Gelderblom et al., 2023). The tax data thus cover a
relatively broad range of the wealth distribution: in the median region and pe-
riod, about 20 percent of adult decedents. For further detail on the tax and its
administration, I refer to De Vicq and Peeters (2020).

I extracted the data from 3,261,708 scanned documents by training various
state-of-the-art object detection and classification algorithms. Detection and
recognition of handwritten data, especially of non-integer numbers, is a prob-
lem at the frontier of deep learning research (e.g., Kusetogullari et al., 2021).
While deep learning is increasingly used in economics research for document
scan digitization, handwritten text and numbers, especially from historical doc-
uments, pose particular challenges (Dell et al., 2023; Dell, 2025). I develop a
framework that ensures accuracy even in the presence of such challenges.

The procedure is summarized as follows. First, I trained an object detec-
tion algorithm called YOLOv5 to recognize the location in the image that con-
tains the relevant information and automatically crop the relevant parts of the
images. Figure 3 shows an example of the cropped data for the richest per-
son in the database. I then trained another such algorithm to detect the image
locations of the assets, liabilities, dates, etc., and subsequently, of individual
numbers. Third, I trained a classification algorithm (also YOLOv5) to assign
each detected number an integer from 0 to 9 and constructed the data on as-
sets, liabilities, and net worth from there. Fourth, I inputted the automatically
cropped images similar to Figure 3a into the GPT-4o API and requested to pro-
vide the name, place of death and residence, and date of death reported in the
image. Fifth, I matched the records to existing high-quality hand-collected de-
mographic information from the civil death registry. Appendix D.1 provides
further detail on sources and the digitization procedure.

I ensure the quality of the wealth data in two ways. First, Figure 3b shows
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FIGURE 3: Example of relevant source information

(A) Name, location, and date of death (B) Wealth

Notes: the images above show the source data for the richest person in the database, Johanna
Jacoba Borski, who died in Bloemendaal on September 18, 1912 with an estate worth ƒ31.8
million. The images are cropped automatically using an object detection algorithm. Panel A
(raw source here) shows the part of the form that contains her personal information and Panel
B (raw source here) indicates the value of her assets, liabilities, and net worth.

that the source files provide an internal test: recognized assets minus liabilities
should equal net worth. The discrepancy in the output of the algorithm is zero
up to the last digit in 92% of cases and below 20% for 97% of cases. Second, to
mitigate noise from the remaining observations, I manually checked all obser-
vations that do not add up exactly and for which net worth is recognized to be
larger than ƒ50,000, roughly the 90th percentile of national wealth.

The resulting dataset on wealth during industrialization is unique in its size
and geographic scope, which is necessary for the empirical analysis. In total,
the database consists of 380,131 wealth observations of which 97 percent can
be confidently assigned to a municipality (of which there were over a thou-
sand nationally). The existing literature has focused on documenting national
trends in wealth distribution using much smaller and geographically concen-
trated samples. For instance, Lindert (1986) (UK) samples 12,581 estates across
four regions and five dates between 1670 and 1875, Piketty et al. (2006) (France)
cover a random sample of Parisian estates in selected years in the 19th century,
and Bengtsson et al. (2018) (Sweden) collect information on samples of around
5000 probate inventories between 1750 and 1900.

Local wealth distributions. Using the micro-level data, I create a panel dataset
on the local wealth distribution. I use the smallest geographical unit, the mu-
nicipality, as the unit of analysis. To ensure a sufficient amount of observations
per period, I compute statistics by decade from the 1880s to the 1920s. I include
every decedent with assessed wealth above ƒ300, the lowest tax threshold, in
the sample on which measures of the wealth distribution are computed.
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A limitation of tax data is that non-assessed individuals are not observed. In
principle, it is possible to infer the number of individuals below the threshold
from the total number of decedents. However, this relies on the estate files to
be complete. Experimentation showed that the coverage is close to complete
for most regions and periods but is low for a small subset of them. I therefore
focus on measures of inequality among those who were assessed.

A second challenge is that the decedent’s wealth distribution is different
from that of the living. While weighting observations by the inverse proba-
bility of death can reduce bias (e.g., Kopczuk and Saez, 2004), it substantially
increases the variance by placing a high weight on a small set of young dece-
dents. Limiting variance is particularly pressing when estimating inequality
within small units. For the baseline analysis, I thus do not weight. To gauge
sensitivity to weighting, I also compute age-weighted wealth statistics. I find
that weighted and unweighted measures of inequality are strongly correlated
(e.g., for the top 1% share, the correlation is 0.90) and, in the main analysis, I
also show robustness to using the weighted estimates.

Local income distributions. I also uncovered and digitized local income dis-
tribution data for 87 municipalities, including most large cities (see Appendix
D.2 for details).19 These data show that local income inequality is strongly cor-
related with wealth inequality, measured from the new wealth data. Figure A.3
plots income and wealth inequality for those municipalities for which both are
observed. The correlations are around 0.9, providing strong evidence that the
constructed wealth and income data are reliable. It also suggests that whether
one uses income or wealth inequality as an outcome is not likely to affect con-
clusions qualitatively.

Local manufacturing. I additionally digitize data on manufacturing by Dutch
municipality for the years 1816-1819 and 1930. The first official Dutch firm
census was performed in 1930 and offers high-quality data on firms by indus-
try and municipality.20 The source contains the number of establishments and
workers by establishment size class and the adoption of motive power. It sep-
arates electric motors driven by purchased energy from self-generated power.
In total, the data consist of 33,134 municipality-by-industry observations.

19I thank Jan Luiten van Zanden for kindly sharing data for some cities.
20I have digitized the data only for manufacturing firms. Source images can be found here.
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For the years 1816 and 1819, I digitized data from two manufacturing sur-
veys of which results were compiled and published by (Brugmans, 1956; Damsma
et al., 1979).21 These data contain, by municipality, information on the num-
ber of establishments and workers for each type of establishment (e.g., tan-
nery or grain mill). Where data is available for both 1816 and 1819, I use
the data for 1819. I added the results for the municipality of Rotterdam and
neighboring municipalities from Korteweg (1926). The final data contain 3,658
municipality-by-industry observations in 539 distinct municipalities and cover
nearly all large cities and other places with a strong manufacturing presence.22

For comparability across years, I coded each industry to a 2-digit ISIC code.

4.2 United States

For the United States, I rely on the tabulations of the decennial Census of Man-
ufactures by state and industry. I digitized and compiled these data for each
decade between 1850 and 1940 and for 1947.23 For 1860, I use the county-
industry level information digitized by Hornbeck and Rotemberg (2024). The
information in this census varies from year to year, but key variables such as
the number of establishments, employment, and value added are available for
each year. From 1870 onward, the tabulations report the adoption of power
technologies such as water wheels, steam power, and, later, electric power use.
In total, the data comprise 51,263 state-industry-year observations.

Since industry classifications changed over time, I created two crosswalks
that allow us to compare industries over time. The first covers all industries
between 1860 and 1900, the period of most rapid steam power adoption, and
consists of 182 industries. This crosswalk is an extension of the 1860 to 1880
crosswalk published by Hornbeck and Rotemberg (2024). The second cross-
walk consists of 206 harmonized industries across the six censuses between
1890 and 1940. To create this second crosswalk, I used tabulations by industries
over time published in the Census of Manufactures. I also coded each industry
its 1950 Census Bureau industry codes. To further improve consistency across
censuses, I drop “hand trades” such as blacksmithing and masonry as these
industries were not included after 1900.

21The source images can be found here.
22For eight out of eleven provinces, the returns are complete. For the remaining three, re-

turns were only found for a subset of municipalities.
23While some authors have used a subset of the data contained in this source (e.g., Kim,

1995), I am not aware of any publicly available and machine-readable database.
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5 Scale-Biased Technical Change and Firm Size

This section documents the impact of steam and electric power adoption on
establishment sizes. Using exogenous variation in the technologies’ costs across
US states, I find that steam power adoption increased establishment sizes, while
electric power decreased them. The results are similar on the city-level.

Instruments. I use a state’s access to historical coal resources as an instru-
ment for steam power adoption. The data is sourced from the National Coal
Resources Data System. I convert historical coal resources to energy in British
thermal units (Btu).24 I then compute “coal access” similar to the usual mea-
sure of market access Donaldson and Hornbeck (2016). That is, for destination
county c, coal access is Coalc = ∑o τ−θ

oc BTUo where τoc ≥ 1 is the “iceberg” cost
of transporting coal between o and c in 1830, θ is the trade elasticity, and BTUo

is county o’s coal resources in Btu.25 I use transportation cost estimates for 1830,
before the (potentially endogenous) introduction of railroads. Similarly, I use
estimates of coal available prior to (potentially selective) mining. For the state-
level analysis, I use the average coal access across counties in the state.

Hydropower potential serves as the instrument for electric power adop-
tion.26 Importantly for exogeneity, the measures reflect the potential to generate
energy with water power and also counts sites with unrealized potential. I use
the estimates of hydropower potential published in (Young, 1964, Table 10).27

Figure A.4 shows the spatial distribution of coal access and hydropower po-
tential. Importantly, coal access and hydropower potential are almost uncorre-
lated at the state-level (ρ = −0.07) so that the instruments have strong power
in distinguishing the effects of steam and electric power.

First stage. Coal access and coal prices are strongly negatively correlated on
the state level (ρ = −0.55, Figure A.5a). Because coal was an important input to

24I follow (Averitt, 1975, Figure 4) in converting coal to Btu and (Averitt, 1975, Table 2) in
including only coal resources with an appropriate overburden and thickness.

25Specifically, as in (Donaldson and Hornbeck, 2016; Hornbeck and Rotemberg, 2024), τoc =
1 + toc/P̄coal . I set P̄coal = 6.08 to the average dollar price of a ton of anthracite coal in 1830,
Philadelphia (Chandler, 1972, Table 2). toc, the transportation cost per ton-mile in 1830, and the
trade elasticity θ = 8.22 are taken from (Donaldson and Hornbeck, 2016).

26See, e.g., Gaggl et al. (2021); Severnini (2022) for other applications of this instrument.
27Since water flow can vary seasonally, hydropower potential may not be constant within a

year. I use estimates of hydropower potential available 50 percent or more of the time.
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steam power production, coal access affected the adoption of steam power. In
1890, the Census of Manufactures reported steam engine and other power use
for each state-industry combination. For that year, I regress measures of steam
power use in industry i in state s on that state’s coal access and industry-fixed
effects. The results in Table B.1 show that coal access strongly affected steam
power use, both measured as steam horsepower per employee and as the share
of steam in total horsepower.

Hydropower potential had a similarly strong effect on electricity prices and
electric power use. Figure A.5b shows that hydropotential lowered electricity
prices by state in 1929 (ρ = −0.70). A within-industry regression shows that
hydropower affected purchased electric power as measured in megawatt-hour
(MWh) per employee, as well as share of total fuel cost (Table B.3).28

Results. I estimate the reduced form effects of coal access and hydropower
potential on the firm size jointly using the following regression equation:

log (yist) = αs + ηit + ∑
k∈T

[βk ln (Coals) + γk ln (Hydros)] Dtk + λ′Xst + εist (4)

where the subscripts i, s, and t refer to industry, state, and year, respectively, Dtk

is a dummy that is 1 if t = k and 0 otherwise and T contains all but one reference
census year. yist is the average number of employees per establishment. Xst is
a vector of controls on the state-year level: it contains population density and
“market access” interacted with time to ensures that the estimated effect of coal
access does not reflect low-cost access to consumer markets.29

The results show that steam power adoption increased establishment sizes.
Figure 4 shows the estimates and 95% confidence intervals for the effects of coal
access and hydropower potential across years. I find that firm sizes in states
with high coal access—adopting more steam power—grew from 1850 onward
relative to other states (Figure 4a).

In contrast, states with high hydropower potential—adopting more electric
power—experienced relative reductions in average firm sizes (Figure 4b). Im-

28The megawatt-hour of purchased electric energy is obtained by dividing the cost of pur-
chased electricity by the average price of electricity per MWh for manufacturers in the state
in 1939. The average price was computed by dividing the total state-wide cost of purchased
electric energy by the quantity purchased. (Census of Manufactures 1939, Volume 1, Ch. VII,
Table 3 and Ch. VI, Table 6).

29I compute market access by county for the year 1830 (before railroads) as in (Donaldson
and Hornbeck, 2016) and average it to the state-level.
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FIGURE 4: Effects of coal access and hydropower potential on firm sizes

(A) Coal access
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(B) Hydropower potential
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Notes: Panels A and B of this figure show estimates of the reduced form effects of coal access and
hydropower potential on firm sizes relative to the base year, accounting for industry and state
fixed effects. Estimates in panels A and B are jointly estimated in one specification (equation
(4)), the only difference being the base year relative to which the coefficients are estimated.
Shaded areas represent 95% confidence intervals. Standard errors are clustered at the state-
level.

portantly, there were no differential trends in firm size based on hydropower
potential prior to the electric motor’s introduction between 1890 and 1900, pro-
viding evidence for the validity of the instrument.

I find evidence for the exclusion restriction that the instruments only affect
the outcomes through power adoption. First, firm sizes in industries that used
little power nationally in 1890 were not affected by coal access (see Figure A.6).
Specifically, I estimate equation (4) for the years between 1860 and 1900, now in-
cluding state × industry fixed effects using the 1860 to 1900 industry crosswalk.
I estimate this equation separately for a set of “placebo” industries—industries
in the bottom quartile of power usage in 1890—and the remaining “treated”
industries.30 Similarly, hydropower potential only affected firm sizes in indus-
tries above the 25th percentile of purchased electric power use (see Figure A.7).

To quantify the effect of steam and electric power adoption on the firm size,
I estimate an instrumental variable regression for two distinct periods: 1860
to 1890 for steam power and 1900 to 1939 for electric power. Specifically, I
regress state-by-industry establishment size growth on technology adoption,

30Power usage is defined as the share of establishments reporting any power use.
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instrumented by hydropower potential and coal access. That is, I estimate

log (yis,1890)− log (yis,1860) = α1 + β1Steamis,1890 + λ′
1Xis + εis (5)

log (yis,1939)− log (yis,1900) = α2 + β2Electricis,1939 + λ′
2Xis + ηis (6)

where Steamis,1890 and Electricis,1939 are steam engine horsepower per worker
in 1890 and megawatt-hour of purchased electricity per worker in 1939. Both
are transformed using the inverse hyperbolic sine function and instrumented
as described.

Table B.4 shows the results of the IV regressions in equations (5) and (6). The
estimate in the first column suggests that a 1% percent increase in steam engine
use led to an increase in average firm size of about 1.1%. The second and third
columns explore the sensitivity of the estimates to changes in the set of controls.
Column four to six show that electric power adoption decreased firm sizes with
an elasticity of around -0.4.

Further evidence using city-level data. I show that the state-level estimated
effects of power on establishment sizes are qualitatively and quantitatively sim-
ilar when estimated on the city-level. From 1880, the Census of Manufactures
also tabulated data by city and industry, for some cities and industries.31 I
use the data from these tabulations digitized by Lafortune et al. (2019). Figure
A.8 shows that the effects estimated using city-level data line up qualitatively
and quantitatively with the state-level findings: cities with more coal access
see a steady increase of establishment sizes over time, while cities with more
hydropower potential see a sharp decline in establishment sizes after 1900.

A specific advantage of the city-level data is that they allow us to separate
any effect hydropower may have had through its effect on water wheel adop-
tion from its effect through electric power adoption.32 Water wheels required
hydropower potential at the site of the plant itself. In contrast, electric energy
can be transmitted over long distances. Electricity was for a large part regu-
lated and priced at the state-level (Stigler and Friedland, 1962).33 This means
that hydropower potential outside the city (but within the state) could affect

31The trade-off between the city- and state-level data is that, while the city-level provides
more geographic granularity, the state-level data is more detailed, especially on power use.

32Table B.2 showed that hydro-potential had some effect on water power use.
33Almost no electricity was purchased from other states. Only 5.7 percent of electricity

crossed state-borders in 1932 (Morin, 2015).
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local electricity prices. However, such hydropower potential could not have af-
fected the establishment sizes through water wheel adoption. Using estimates
of hydropower potential on the county-level provided by (Gaggl et al., 2021), I
find that the effects of hydropower potential are driven by hydropower poten-
tial out of the city, suggesting that water power adoption did not contaminate
the estimated effects of electric power much (see Figure A.9).

6 Scale-Biased Technical Change and Inequality

In this section, I study the distributional effects of scale-biased technical change.
I first show using US data that steam power adoption increased the profit-wage
ratio, a measure of income inequality between workers and entrepreneurs, while
electric power decreased it. Furthermore, by using wealth data from the 1860
and 1870 US Census, I find that profit-wage ratios are indeed strongly corre-
lated with inequality between households.

I then test directly how steam and electric power had affected inequality us-
ing the Dutch panel data on local wealth inequality. I find that wealth inequal-
ity rose in municipalities with high steam power adoption, while it declined in
those with high electric power adoption. For identification purposes, I exploit
that some municipalities were more exposed to the use of these technologies
given their industry composition within manufacturing in 1816, long before
the widespread adoption of either technology.

6.1 The Effect on Profit-Wage Ratios

In the model in Section 3—where each entrepreneur owns one firm—the ratio
between the average profits, π̄, and the wage, w, equates income inequality
between workers and entrepreneurs.

The profit-wage ratio is structurally related to the average firm size. In the
model, π̄

w = A + (A − 1) × Average firm size where A ≡ ξσ
ξσ−σ+1 > 1.34 That

is, the more employees per firm, the larger the average profits of entrepreneurs
relative to the wage. Figure A.10 shows that this relationship holds empirically
across states and industries. For the years between 1890 and 1920, the census
data allow us to compute profits as output minus costs of wages, raw materials,

34Proof: (1 − F(ψ̄)) π̄ + F (ψ̄)w = Y. In equilibrium Y = Aw (Proposition A.2), so that
π̄
w = 1 + A−1

1−F(ψ̄) . The result then follows from 1 + Average firm size = 1
1−F(ψ̄) .
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capital, and other expenses (Atack and Bateman, 2008).35 I set the wage to the
wage bill divided by the number of workers. I also repeat this exercise using
establishment-level data from the 1880 census digitized by Atack and Bateman
(1999) where hourly wages are directly observed and find an almost identical
relation between firm sizes and profit-wage ratios (Panel B of Figure A.10)

Consistent with this structural relationship, I find that the effects of steam
and electric power on profit-wage ratio are similar to the effects on firm size.
Steam power adoption increased the average profits of an establishment rela-
tive to the average wage (Figure 5a), while electric power adoption decreased it
(Figure 5b). The theory predicts this because high fixed cost technologies push
up the average firm size and thus profits relative to the wage. The methodology
to estimate these effects is identical to those used in Section 5, except that the
outcome variable is now the profit-wage ratio in industry i, state s, and year t.
Because data on the capital stock and “miscellaneous expenses” are not avail-
able for all years, I approximate average profits as value added minus labor
costs per establishment.36 Table B.5 shows the IV estimates of the elasticity of
the profit-wage ratio to steam and electric power adoption.

I also find that profit-wage ratios are strongly associated with inequality
among households. Using US microdata on wealth from 1870, the last year
for which such data is available, I show that firm sizes and profit-wage ratios
are strongly correlated with measures of wealth inequality. To do so, I compute
wealth inequality between entrepreneurs and workers in a given state and in-
dustry in the 1870 Census of Population and merge these measures with data
from the 1870 Census of Manufactures.37 Figure 6a shows that this wealth gap
was larger in state-industry pairs with larger profit-wage ratio: a one percent
increase in the profit-wage ratio is associated with a 0.99 percent increase in the
entrepreneur-worker wealth gap. Since entrepreneurs dominate the very top of
the distribution, top 1% wealth shares are similarly correlated with firm sizes

35I approximate capital costs as 4.33 percent of the capital stock. Atack and Bateman (2008)
assumed different capital costs for plants (2%) than for equipment (6.67%). Since I cannot dis-
tinguish between different types of capital, I use the average of these two rates.

36The correlation between this measure of average profits and the measure used by Atack
and Bateman (2008) is high: 0.75 in levels and 0.96 in logs.

37I harmonize industry groups between the Census of Manufactures and the Census of Pop-
ulation by aggregating industries in the manufacturing data to the 1950 industry classification.
To identify entrepreneurs, I use that the occupational code “manufacturer” in the 1870 census
was reserved for owners of establishments. I therefore assume individuals with occupational
code 198 “manufacturer” to be entrepreneurs and those with any other manufacturing occupa-
tions (codes between 130 to 265, excluding 198) to be workers.
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FIGURE 5: Effects of coal access and hydropower potential on the profit-wage
ratio

(A) Coal access
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(B) Hydropower potential
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Notes: Panels A and B of this figure show estimates of the reduced form effects of coal access
and hydropower potential on the ratio between average profits and average wages relative to
the base year, accounting for industry and state fixed effects. Estimates in panels A and B are
jointly estimated in one specification (see equation (4) for the econometric specification), the
only difference being the base year relative to which the estimates are estimated. Shaded areas
represent 95% confidence intervals. Standard errors are clustered at the state-level.

and profit-wage ratios (Figure 6b).

Figure A.11 shows that average wages were not affected by coal access or
hydropower potential, implying that the effects of profit-wage ratios are mostly
due to increases in average profits. This result also provides empirical evidence
that the technologies did not significantly affect the skill composition of the
workforce, and that we can thus distinguish the effects of scale from skill.

6.2 The Effect on Wealth Inequality

The finding that steam power increased the profit-wage ratio and electric power
decreased it, coupled with the strong correlation between profit-wage ratios
and inequality, already suggests that steam increased inequality, while electric-
ity decreased it. In this subsection, I use the newly digitized wealth data from
the Netherlands to provide direct evidence on the distributional effects of scale-
biased technical change.

I use the digitized Dutch inheritance tax data described in Section 4.1 to cre-
ate various measures of local (municipality-level) wealth inequality for the pe-
riod between 1879 and 1927. In the analysis, I only use municipality-time mea-
sures of wealth inequality that are based on at least a hundred observations.
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FIGURE 6: Profit-wage ratios
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Notes: These figures show the correlation between a state-industry’s profit-wage ratios and
wealth inequality between households active in it. Wealth inequality is computed from mi-
crodata from the 1870 population census. Profit-wage ratios are computed from the Census of
Manufacturing. The manufacturing industries are converted to 1950 industry for consistency
with the population census. State-industry pairs are weighted by the number of individuals for
which wealth is observed.

This yields 819 municipality-decade observations from 210 municipalities.

I measure power adoption in each Dutch municipality using the newly dig-
itized 1930 firm census. These data divide establishments into 1) those using
prime movers run by energy generated in the plant, 2) those only using prime
movers run by purchased electricity, and 3) those not using any power. The
measure of local steam power adoption in municipality m, Steam1930,m, is the
share of workers in the first type of establishments. Similarly, Electric1930,m, is
the share of workers in the second group of establishments.

For steam use, the specification is as follows:

ymt = αm + ηt + ∑
k∈T\{1880}

βkSteam1930,mDtk + ε1,mt (7)

where the subscript t ∈ T refers to the decade between 1880 and 1920, m to the
municipality and Dtk is 1 if t = k and 0 otherwise. The specification for electric
power use is analogous. The dependent variable ymt is a moment of the wealth
distribution, e.g., the top 1 percent wealth share. The coefficient βk captures the
association between steam power and electric power adoption and the change
in wealth inequality from 1880 to year k.

Figure 7 shows that places adopting steam power saw a relative increase in
wealth inequality, while electric power adoption is associated with decreases
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FIGURE 7: Steam power increased inequality, electric power decreased it

(A) Steam power effect

0

.1

.2

.3

St
ea

m
 p

ow
er

's 
ef

fe
ct

 o
n 

w
ea

lth
 in

eq
ua

lit
y 

in
 p

p.

1880 1890 1900 1910 1920

(B) Electric power effect

-.3

-.2

-.1

0

.1

El
ec

tri
c p

ow
er

's 
ef

fe
ct

 o
n 

w
ea

lth
 in

eq
ua

lit
y 

in
 p

p.

1880 1890 1900 1910 1920

Notes: This figure shows the estimated effects in percentage points of steam power (in panel
A) and purchased electric power adoption (in panel B) on within-municipality top wealth in-
equality for each decade relative to 1880. The econometric specification is shown in equation
(7). Observations are weighted by the number of individuals on which the inequality measure
is based. Shaded areas represent 95% confidence intervals.

in inequality. The coefficients in Figure 7a mean that a 1 p.p. increase in the
share of employment exposed to steam power leads to an increase in the top
1% wealth share of about 0.2 p.p. This effect is statistically and economically
significant. Local steam power adoption varied strongly: a one standard devi-
ation increase in steam power adoption (0.2) increases the top 1% wealth share
by around 4 p.p. in 1920, while the average top 1% wealth share across mu-
nicipalities was 21 percent. In contrast, Figure 7b shows that the adoption of
purchased electric power is associated with a decrease in top 1% wealth shares.
Figure A.12 shows that results are almost identical when using weighted esti-
mates of wealth inequality as the dependent variable. I find similar effects on
income inequality for the subset of municipalities for which data is available
(results available upon request).

To directly compare the effect of steam power adoption and electric power
adoption, I also estimate equation (7) while controlling for the share of employ-
ment in establishments that did not use any power.38 The coefficient of interest
then reflects the increase in wealth inequality associated with a 1 p.p. increase
in steam power use and a 1 p.p. decrease in purchased electric power use. The
results are shown in Figure A.13. Holding total power usage constant, wealth
inequality increased in places with steam relative to electric power.

38That is, I estimate:

ymt = α3m + η3t + ∑
k∈T\{1880}

[β3k (Steam1930,m × Dtk) + γ3k (NoPower1930,m × Dtk)] + ε3,mt.
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Lastly, Figure A.14 shows how different parts of the wealth distribution are
affected. Power use is most strongly correlated with rising wealth shares of the
very top. The more one zooms into the top—from the top 25% to the top 1%—
the more strongly is steam power (relative to electric power) correlated with an
increasing share of the top relative to its complement. This too, is consistent
with the theory: since most entrepreneurs are at the very top of the distribu-
tion, large-scale-biased technical change mostly implies an increase in inequal-
ity within the higher end of the distribution.

Instrumental variable analysis. The municipality-fixed effects specification
in equations (7) controls for any time-invariant unobserved heterogeneity across
municipalities. Time-varying heterogeneity is a potential remaining threat to a
causal interpretation of the coefficients in Figure 7. For instance, it is a pri-
ori conceivable that changes in local inequality between 1880 and 1920 also af-
fected technology adoption, leading to reverse causality. I use an instrumental
variable strategy to assess the quantitative importance of such mechanisms.

The identification strategy uses that the local industry composition in man-
ufacturing in 1816—long before Dutch industrialization—is predictive of later
local steam and electric power adoption.39 To construct the instrument, I first
use the Dutch manufacturing data from 1930 to compute each 2-digit industry
i’s adoption of steam and electric power.40 Then, I calculate the employment
share of each industry within total manufacturing in 1816 in each municipal-
ity. I combine these into a measure of exposure to steam and electric power in
municipality m in 1816 as:

SteamExposure1816,m = ∑
i∈I

Emp. in ind. i in m in 1816
Total emp. in m in 1816

× Steam1930,i (8)

where the adoption rates on the industry-level Steam1930,i is computed analo-
gously to its equivalent on the municipality-level, Steam1930,m. ElectricExposure1816,m

is defined analogously. The exposure measures are strong predictors of actual
adoption in 1930 (the raw correlations are 0.50 and 0.39 for steam and electric
power, respectively). I then estimate the “reduced form” of the instrumental

39The geographic instruments used in the US context can not be reliably applied to the Dutch
case because there is no hydropower potential nor any coal deposits except for the southern tip.

40For example, the textiles and beverage industries were the largest adopter of steam power,
with half of employment in establishments using steam. On the other hand, the leather, apparel,
tobacco, and printing industries barely used any steam at all.
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variable analysis equivalently to equations (7) except that the actual adoption
rates are changed for the predicted rates.

Figure A.15 shows that places more exposed to steam power became more
unequal between 1880 and 1927, while those exposed to electric power became
more equal, providing further evidence that steam and electric power affected
inequality in opposite ways.

7 Conclusion

In this paper, I study the distributional effects of steam and electric power, two
revolutionary general purpose technologies. These two technologies shed light
on a new channel through which technical change affects inequality: scale bias.
When technical change is large-scale-biased, profits concentrate into a smaller
set of firms. With fewer and larger firms, top entrepreneurs gain disproportion-
ately, driving up top income inequality.

The theory of scale-biased technical change and inequality provides a unified
framework to explain three macroeconomic trends of the last decades. First,
firm concentration is increasing (Autor et al., 2017, 2020; Kwon et al., 2024) and
entrepreneurship is declining (Salgado, 2020; Jiang and Sohail, 2023), mostly
driven by increased entry costs (Deb, 2024; Kozeniauskas, 2024). A large lit-
erature relates these patterns to increasing returns to scale coming from in-
formation technology and intangible capital (Brynjolfsson et al., 2008; Unger,
2022; Aghion et al., 2023; Hsieh and Rossi-Hansberg, 2023; De Ridder, 2024;
Lashkari et al., 2024; Kwon et al., 2024). Second, top income and wealth in-
equality has increased sharply. Between 1980 and 2014, the United States ex-
perienced 21% growth in the incomes of the bottom half of the distribution,
while the top 10 percent saw their incomes more than double during the same
period (Piketty et al., 2018). Third, since the 1990s, business income—not wage
income—accounts for the largest part of the rise of top incomes in the United
States (Smith et al., 2019).

This paper leaves several important questions for future research. First, in
the stylized model presented, technical change and its direction is exogenous.
While I think this assumption is reasonable in the empirical case studied in this
paper, a concentrated firm size distribution may further incentivize large-scale-
biased technical change, similar to how innovation is directed to the more abun-
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dant skill (Acemoglu, 2002). Further, in the presence of liquidity constraints,
entrepreneurship naturally skews towards high wealth individuals (Quadrini,
2000; Cagetti and De Nardi, 2006; Buera et al., 2011; Buera and Shin, 2013). In
such an environment, large-scale-biased technical change may aggravate se-
lection on wealth and even worsen aggregate productivity. Lastly, the rapid
adoption of AI technologies raises questions on its distributional effects. Re-
search shows that large firms tend to be the early adopters of the technology
(McElheran et al., 2023). More research is necessary to understand whether this
will remain the case as these technologies mature.
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Appendix

A Figures

FIGURE A.1: Adoption rates by establishment size

(A) Steam engines (1880)
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Notes: This figure indicates the share of establishments using steam engines in 1880 (panel A)
and electric motors driven only by purchased electricity vs. generated electricity in 1929 (panel
B) by establishment size as computed from samples of the Census of Manufactures. Sources: for
1880: (Atack and Bateman, 1999) (national sample); for 1929: (Vickers and Ziebarth, 2018).

FIGURE A.2: Illustration of pay-offs and optimal decisions
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FIGURE A.3: Correlation between income and wealth inequality
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Notes: This figure shows the correlation between income inequality and wealth inequality in
the 1880s. Each dot is a municipality and its size represents the number of wealth observations.

FIGURE A.4: Map of coal access and hydropower potential

(A) Coal access (B) Hydropower potential

Sources: USGS for coal; (Young, 1964, Table 10) for hydropower potential.

FIGURE A.5: Correlation between instruments and coal and electricity prices
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AL

AZ

AR

CA

CO

CT

DE
FLGA

ID

IL

INIA

KS
KY

LA

ME

MD

MA

MI

MN

MS

MO

MT
NE

NV

NH

NJ

NM

NYNC

ND
OH

OK

OR

PA

RI

SC

SD

TN

TX
UT

VT

VA

WA

WV

WI

WY

2

4

6

8

Bi
tu

m
in

ou
s c

oa
l p

ric
e (

$/
to

n,
 1

92
9)

10 15 20 25
Coal access (state-averages, in logs)

Correlation: -0.549

(B) Hydropotential and electricity prices

AL AZ

AR

CA

CO

CT
DE

FL

GA

ID

IL
IN

IA

KS

KY
LA

ME

MD

MA

MIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NYNC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX UT

VT

VA

WA

WV

WI

WY

.005

.01

.015

.02

.025

El
ec

tri
ci

ty
 p

ric
e (

$/
kW

h,
 1

92
9)

2 4 6 8 10
Hydropower potential (in logs of kWh)

Correlation: -0.698

Sources: For prices, Census of Manufactures 1929; other sources are the same as for Figure A.4.
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FIGURE A.6: Heterogeneous effects of coal access across industries
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Notes: This figure shows estimated reduced form effects of coal access. Panel A shows the
effect estimated on a subset of industries that adopt any power nationally in 1890 ( above the
25th percentile in share of establishments using power). Panel B shows the effect estimated
on “placebo” industries, below the 25th percentile. Shaded areas represent 95% confidence
intervals. Standard errors are clustered at the state-level.

FIGURE A.7: Heterogeneous effects of hydropower potential across industries
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Notes: This figure shows estimated reduced form effects of hydropower potential on establish-
ment sizes. Panel A shows the effect for industries that adopt electric motors nationally in 1939
(above the 25th percentile in share of fuel costs that is electric in 1939). Panel B shows the effect
estimated on “placebo” industries, below the 25th percentile. Shaded areas represent 95% con-
fidence intervals. Standard errors are clustered at the state-level.
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FIGURE A.8: Effects of coal access and hydropower potential on the
city-industry level
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Notes: Panels A and B of this figure show estimates of the reduced form effects of coal access
and hydropower potential on establishment sizes on the city-industry level. Estimates in panels
A and B are jointly estimated in one specification (see equation (4) for the econometric speci-
fication), the only difference being the base year relative to which the estimates are estimated.
Shaded areas represent 95% confidence intervals. Standard errors are clustered at the city-level.

FIGURE A.9: Effects of hydropower potential on the city-industry is mostly
through state-level hydropower

(A) Hydropower potential in the city
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(B) Hydropower potential outside the
city
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Notes: Panels A and B of this figure show estimates of the reduced form effects of hydropower
potential on establishment sizes on the city-industry level. Estimates in panels A and B are
jointly estimated in one specification where the regression includes both hydropower potential
within a 50 mile radius of the city and hydropower potential within the state outside of a 50
mile radius. Data on hydropower potential by county is from (Gaggl et al., 2021). Shaded areas
represent 95% confidence intervals. Standard errors are clustered at the city-level.
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FIGURE A.10: Correlation between profit-wage ratio and firm size

(A) State-industry level data
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Slope: 0.631*** (0.004)

(B) Establishment level-data
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Notes: Panels A and B show binscatters of firm sizes and the ratio between average profits and
wages by industry (each in logs). Each observation is an industry-state-year combination. Aver-
age profits are approximated by dividing total output minus cost of raw materials, labor costs,
capital costs, and other expenses by the number of establishments. Panel A is computed from
the newly digitized state-industry data. There, the wage rate is approximated by dividing total
wage costs by total employment. Panel B is computed from establishment-level data digitized
by (Atack and Bateman, 1999), similarly aggregated to the state-industry level. In these data,
the daily wage is directly observed. In both panels, state-industry pairs are weighted by the
number of establishments.

FIGURE A.11: No detectable wage effects of either technology

(A) Coal’s effect on wages
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(B) Hydropower’s effect on wages
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Notes: Panels A and B of this figure show estimates of the reduced form effects of coal access
and hydropower potential on the average wage in logs relative to the base year, accounting
for industry and state fixed effects. Estimates in panels A and B are jointly estimated in one
specification (see equation (4) for the econometric specification where the outcome variable
is the log of the average wage), the only difference being the base year relative to which the
estimates are estimated. Shaded areas represent 95% confidence intervals. Standard errors are
clustered at the state-level.
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FIGURE A.12: Robustness to using weighted wealth inequality measures

(A) Steam power effect
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(B) Electric power effect

-.3

-.2

-.1

0

El
ec

tri
c p

ow
er

's 
ef

fe
ct

 o
n 

w
ea

lth
 in

eq
ua

lit
y 

in
 p

p.

1880 1890 1900 1910 1920

Notes: This figure shows the estimated effects in percentage points of steam power (in panel A)
and electric power adoption (in panel B) on within-municipality top wealth inequality for each
decade relative to 1880. The only difference with 7 is that wealth inequality is computed by
weighting individuals by the inverse probability of death as estimated by their age. The econo-
metric specifications is detailed in equations (7). Observations are weighted by the number of
individuals on which the inequality measure is based. Shaded areas represent 95% confidence
intervals.

FIGURE A.13: Steam power adoption relative to electric power adoption
increased wealth inequality.
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Notes: This figure shows the estimated effects in percentage points of steam power adoption
on within-municipality top wealth inequality for each decade relative to 1880 relative to elec-
tric power adoption. Observations are weighted by the number of individuals on which the
inequality measure is based. Shaded areas represent 95% confidence intervals.
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FIGURE A.14: Steam vs. electric power is most correlated with increased
wealth inequality at the very top

(A) Top 1% share
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(B) Top 5% share
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(C) Top 10% share
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(D) Top 25% share
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Notes: This figure shows the estimated effects in percentage points of steam power (panel A)
and electric (panel B) power on within-municipality on wealth shares of different groups of
top wealth owners. Observations are weighted by the number of individuals on which the
inequality measure is based. Shaded areas represent 95% confidence intervals.

FIGURE A.15: Steam power increased wealth inequality, electric power
decreased it (IV)

(A) Steam power effect

-.2

0

.2

.4

.6

St
ea

m
 e

ng
in

e 
ex

po
su

re
's

 e
ff

ec
t o

n 
w

ea
lth

 in
eq

ua
lit

y 
in

 p
p.

1880 1890 1900 1910 1920

(B) Electric power effect
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Notes: This figure shows the estimated effects in p.p. of pre-industrial exposure to steam (in
panel A) and electric power (in panel B) on within-municipality top wealth inequality (top 1%
share) for each decade relative to 1880. The instrumental variable is exposure to the respective
technology based on the local industry composition in 1816 and adoption rates by industry in
1930. Observations are weighted by the number of individuals on which the inequality measure
is based. Shaded areas represent 95% confidence intervals.
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B Tables

TABLE B.1: Positive effects of coal access on steam engine adoption (1890)

Steam hp per worker (asinh) Steam as share of total hp

Coal access (logs) 0.022∗∗∗ 0.022∗∗∗ 0.023∗∗∗ 0.031∗∗∗ 0.031∗∗∗ 0.035∗∗∗

(0.004) (0.004) (0.004) (0.007) (0.007) (0.007)

Hydro-potential (logs) -0.006∗∗ -0.006∗ -0.007 -0.006
(0.003) (0.003) (0.007) (0.005)

Market access (logs) X X

Observations 4237 4237 4237 3395 3395 3395

Notes: This table shows the effect of coal access (in logs) on steam engine horsepower per em-
ployee and as fraction of total horsepower. The unit of analysis is a state-industry pair. Standard
errors in parentheses are clustered at the state-level. Industry fixed-effects included. * p < 0.10,
** p < 0.05, *** p < 0.01.

TABLE B.2: Little effect of coal access on overall power use (1890)

Water hp per worker (asinh) Total hp per worker (asinh)

Coal access (logs) -0.030∗∗ -0.028∗∗ -0.037∗∗∗ -0.001 -0.001 -0.005
(0.013) (0.013) (0.012) (0.006) (0.006) (0.006)

Hydro-potential (logs) 0.017 0.016∗∗ 0.002 0.002
(0.010) (0.008) (0.006) (0.004)

Market access (logs) X X

Observations 4237 4237 4237 4237 4237 4237

Notes: This table shows the effect of coal access (in logs) on horsepower of adopted water wheels
and total horsepower per employee. Standard errors in parentheses are clustered at the state-
level. Industry fixed-effects included. * p< 0.10, ** p< 0.05, *** p< 0.01.
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TABLE B.3: Positive effects of hydropower potential on purchased electric
energy use (1939)

MWh per worker (asinh) Electricity as share of fuel

Hydro-potential (logs) 0.110∗∗∗ 0.116∗∗∗ 0.120∗∗∗ 0.020∗∗∗ 0.018∗∗∗ 0.017∗∗∗

(0.029) (0.024) (0.021) (0.004) (0.003) (0.003)

Coal access (logs) 0.022 0.015 -0.007∗∗ -0.005∗

(0.017) (0.017) (0.003) (0.002)

Market access (logs) X X

Observations 5031 5031 5031 5010 5010 5010

Notes: This table shows the effect of hydropower potential (in logs) on megawatt-hour of pur-
chased electricity per employee and as fraction of total horsepower. Standard errors in paren-
theses are clustered at the state-level. Industry fixed-effects included. * p < 0.10, ** p < 0.05,
*** p < 0.01.

TABLE B.4: Opposite effects of steam and electric power adoption on firm sizes

∆ ln(firm sizeis)

1860-1890 1900-1939
Steam power in hp

Employees 1.058 1.089

(0.450) (0.483)
Electricity in MWh

Employees -0.338 -0.266

(0.123) (0.157)
Controls X X

Observations 1900 1900 2117 2117
Kleibergen-Paap F-stat. 42.9 24.7 40.9 37.9

Notes: This table shows the estimated effects of steam and electric power adoption per em-
ployee on the change in log firm size by state and industry. The explanatory variables are the
inverse hyperbolic sine of steam engine horsepower in 1890 and megawatt-hour of purchased
electricity per worker in 1939. The adoption variables are instrumented with coal access (for
steam) and hydropower potential (for electricity). Industry fixed effects are included in all
regressions. Where controls are indicated, the regression is controlled for the state’s income
(1900-1940) and wealth (1860-1890) growth per capita. Market access is used as a control in all
specifications. Observations are weighted by the number of establishments in the base year.
Standard errors in parentheses are clustered at the state-level.
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TABLE B.5: Opposite effects of steam and electric power on profit-wage ratios

∆ ln(profit-wage ratiois)

1860-1890 1900-1939
Steam power in hp

Employees 1.134 1.020

(0.529) (0.512)
Electricity in MWh

Employees -0.440 -0.322

(0.268) (0.315)
Controls X X

Observations 1869 1869 1935 1935
Kleibergen-Paap F-stat. 42.8 24.8 11.6 9.9

Notes: This table shows the estimated effects of steam power and electric power adoption on
the change in the log profit-wage ratio in a given state and industry. The explanatory variables
are the inverse hyperbolic sine of steam engine horsepower in 1890 and megawatt-hour of
purchased electricity per worker in 1939. The adoption variables are instrumented with coal
access (for steam) and hydropower potential (for electricity). Where controls are indicated, the
regression is controlled for the state’s income (1900-1940) and wealth (1860-1890) growth per
capita. Market access is used as a control in all specifications. Observations are weighted by
the number of establishments in the base year. Standard errors in parentheses are clustered at
the state-level.
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C Model appendix

C.1 Definition of competitive equilibrium

Definition (Competitive equilibrium).
Given an exogenous technology set T = {t1, .., tJ}, a competitive equilibrium con-
sists of a price w, output Y, a set of adopted technologies T∗, and adopting sets
Ψj, such that

– the set of households choosing entrepreneurship with technology j is

Ψj ≡
{

ψ | πj(ψ) ≥ w
}
∩
{

ψ | πj(ψ) = max
k

πk(ψ)

}
. (9)

where πj(ψ) is as defined in equation (1);

– the labor market clears, so that

F(ψ̄)︸ ︷︷ ︸
Labor supply

= Y
( ρ

w

)σ J

∑
j=1

α1−σ
j

∫
ψ∈Ψj

ψσ−1dF(ψ) +
J

∑
j=1

∫
ψ∈Ψj

κjdF(ψ)︸ ︷︷ ︸
Labor demand

; (10)

– the pricing by entrepreneurs is consistent with a price index equal to 1, so
that

1 =

(
w
ρ

)1−σ J

∑
j=1

α1−σ
j

∫
ψ∈Ψj

ψσ−1dF(ψ). (11)

C.2 Proposition A.1

Proposition A.1 (Adopted technologies). Let t∗j = {α∗j , κ∗j } be the technology in
T∗ with the jth-lowest fixed cost κ∗j and let J∗ ≡ |T∗|. Then, the set of technologies

adopted in equilibrium, T∗ =
{

t∗1 , . . . , t∗J∗
}

, is such that

(a) the adopted technology with the highest marginal (lowest fixed) cost t∗1 = (α∗1 , κ∗1)
is such that (α∗1)

σ−1(1 + κ∗1) = minj∈{1,...,J} ασ−1
j (1 + κj). In case more than

one technology satisfies this criterion, only the technology with lower marginal
cost is adopted;

(b) the adopted technology with the lowest marginal (highest fixed) cost t∗J∗ = (α∗J∗ , κ∗J∗)
is such that α∗J∗ = minj∈{1,...,J}

{
αj
}

;
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(c) any technology with fixed cost κ∗1 < κj < κ∗J∗ is adopted if and only if for any
k ∈ {1, . . . , j − 1} and l ∈ {j + 1, . . . , J}

α1−σ
l − α1−σ

j

α1−σ
j − α1−σ

k

<
κl − κj

κj − κk
.

Proof of Proposition A.1. I prove Proposition A.1 by proving its elements (a) to
(c) sequentially.
Proposition A.1(a): Since ∆πjk(ψ) (defined in equation (2)) is strictly increasing
in ψ if κj > κk and αj < αk, the least productive entrepreneur uses the adopted
technology with the highest marginal and lowest fixed cost. Also, the least pro-
ductive entrepreneur has productivity ψ equal to the lowest threshold ψ̄j of all
available technologies, minj∈1,...,J ψ̄j. From equation (3), technology tj has the

lowest entry threshold if and only if αj(1+ κj)
1

σ−1 = mink∈{1,...,J}
{

αk(1 + κk)
1

σ−1

}
.

If more than one technology that satisfies this, then among those only the tech-
nology with lowest marginal cost is adopted by a strictly positive measure
of entrepreneurs (since ∆πjk(ψ) is strictly increasing, any entrepreneur with
ψ > ψ̄ would strictly prefer the technology with lower marginal cost).
Proposition A.1(b): Note that ∆πjk(ψ) → ∞ in (2) as ψ → ∞ if and only if
αj < αk. Hence, there exists a productivity level high enough such that it is
profitable to adopt the lower marginal cost technology. The assumptions on the
productivity distribution imply that for any C > 0, Pr(ψ > C) > 0 so that the
technology with lowest marginal cost is always adopted.
Proposition A.1(c): A technology tj with fixed cost κj such that κ∗1 < κj < κ∗J∗ is
adopted if and only if there exists a ψ > ψm for which it 1) dominates all tech-
nologies with lower fixed costs, 2) dominates all technologies with higher fixed
cost, and 3) yields positive profits. Condition 3) is redundant since it can only
dominate technology t∗1 if ψ > ψ̄ and t∗1 yields positive profits for all ψ > ψ̄. An
intermediate technology tj is thus adopted iff there exists a ψ > ψm such that
∆πjk(ψ) > 0 for all k ∈ {1, . . . , j − 1} and ∆πjl(ψ) > 0 for all l ∈ {j + 1, . . . , J}.
Using equation (2), this yields the following two restrictions:

Y
σ
(ρψ)σ−1 w−σ >

κj − κk

α1−σ
j − α1−σ

k

for all k ∈ {1, . . . , j − 1} and; (12a)

Y
σ
(ρψ)σ−1 w−σ <

κl − κj

α1−σ
l − α1−σ

j

for all l ∈ {j + 1, . . . , J} (12b)

For (12a) and (12b) to hold for some ψ > ψ̄, it is necessary and sufficient that
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the lower bound in (12a) is lower than the upper bound in (12b). This yields
the inequality in part (c) of the proposition.

C.3 Proposition A.2

Proposition A.2 (Closed-form equilibrium). Suppose that the distribution of pro-
ductivity ψ is Pareto with shape parameter ξ and a minimum productivity level of
ψm > 0 such that ξ > 1 and ξ > σ − 1. Then, given the set of technologies adopted in
equilibrium T∗, the solution to the competitive equilibrium is

ψ̄ = ψm

(
1 +

ξ(σ − 1)
ξ − σ + 1

) 1
ξ

(1 + κ̄)
1
ξ (13)

ψ̄j,j+1 = ψ̄

(
κ∗j+1 − κ∗j

(α∗j+1)
1−σ − (α∗j )

1−σ

) 1
σ−1 (

α∗1(1 + κ∗1)
1

σ−1

)−1
∀j = 1, . . . , J∗ (14)

Y = ψm(σ − 1)
(

ξ

ξ − σ + 1

) σ
σ−1
(

1 +
ξ(σ − 1)
ξ − σ + 1

) σ−ξσ−1
ξ(σ−1) (1 + κ̄)

1
ξ

α∗1(1 + κ∗1)
1

σ−1
(15)

w =

(
1 − σ − 1

ξσ

)
Y (16)

where κ̄ is the average fixed cost among entrepreneurs:

κ̄ =


κ∗1 if J∗ = 1

κ∗1 +
(

α∗1 (1 + κ∗1)
1

σ−1
)ξ

∑J∗
j=2

((
(α∗j )

1−σ−(α∗j−1)
1−σ
)ξ

(
κ∗j −κ∗j−1

)ξ−σ+1

) 1
σ−1

if J∗ > 1.

The set of households choosing entrepreneurship with technology j∗ = 1, . . . , J∗ is

Ψ∗
j =

[ψ̄j−1,j, ψ̄j,j+1] if j∗ < J∗

[ψ̄j−1,j, ∞) if j∗ = J∗
(17)

where ψ̄0,1 ≡ ψ̄. The remaining households choose to work.

Proof of Proposition A.2. Setting the profit difference ∆πj,j+1(ψ) in (2) to zero
yields that an entrepreneur is indifferent between adopting t∗j and t∗j+1 if their
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productivity is

ψ̄j,j+1 =

(
κ∗j+1 − κ∗j

(α∗j+1)
1−σ − (α∗j )

1−σ

) 1
σ−1 ( σ

Y

) 1
σ−1 w

σ
σ−1

ρ

so that a comparison with ψ̄ in equation (3) yields (14). The adopting sets Ψ∗
j in

equation (17) then follow from the fact that the profit gain from lower marginal
cost technologies is increasing in ψ.

Equation (13) follows by combining equations (3), (10), (14), and (17), and
imposing the Pareto distribution: f (ψ) = ξψ

ξ
mψ−ξ−1 and F(ψ) = 1 − ψ

ξ
mψ−ξ .

Equations (15) and (16) then follow from combining equations (11) and (13),
and the definition of κ̄.

C.4 Proposition A.3

Proposition A.3 (The competitive equilibrium is socially optimal). Suppose the
assumption in Proposition A.2 (Pareto distribution) holds. Then, the competitive equi-
librium is socially optimal. That is, it maximizes output subject to the resource con-
straint.

Proof of Proposition A.3. We maximize (a monotonic transformation of) output
Y

max
{Ψj,lj(ψ)}J

j=1

 J

∑
j=1

∫
Ψj

(
ψlj(ψ)

αj

) σ−1
σ

dF(ψ)


σ

σ−1

subject to the resource constraint

J

∑
j=1

∫
Ψj

lj(ψ)dF(ψ) +
J

∑
j=1

κj

∫
Ψj

dF(ψ) = 1 −
J

∑
j=1

∫
Ψj

dF(ψ).

First, conditional on occupational and technological choice, it is straightforward
to derive that the optimal allocation of labor to an entrepreneur with produc-
tivity ψ and technology j is

lSP
j (ψ) =

(
σ − 1

σ

1
λ

)σ
(

ψ

αj

)σ−1

where λ is the Lagrange multiplier on the resource constraint (i.e., the marginal
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product of labor). Thus, the relative allocation of labor across entrepreneurs
with given ψ and technology j is equal to the competitive equilibrium.

Given the optimal allocation of labor to entrepreneur-technology pairs, the
social surplus of being an entrepreneur with technology j and productivity ψ

relative to being a worker is

1
σ

(
σ − 1

σ

1
λ

)σ−1
(

ψ

αj

)σ−1

− (1 + κj)λ

where the first term reflects output minus variable labor costs and the second
term reflects the fixed labor costs (which includes the opportunity cost of the en-
trepreneur’s own labor). Since this surplus is increasing in ψ, there is a thresh-
old ψ̄SP

j above which being an entrepreneur with technology j yields higher
surplus than being a laborer:

ψ̄SP
j = αj(1 + κj)

1
σ−1 σ

1
σ−1

σ

σ − 1
λ

σ
σ−1 .

The productivity threshold above which a household becomes an entrepreneur
is ψ̄SP = minj∈1,...,J ψ̄SP

j . Note that the above equation implies that the marginal
entrepreneur in the social planner allocation uses the same technology as the
marginal entrepreneur in the competitive equilibrium (the one that minimizes
αj(1 + κj)

1
σ−1 ).

The social surplus when using technology j relative to technology k is

1
σ

(
σ − 1

σ

1
λ

)σ−1

ψσ−1(α1−σ
j − α1−σ

k )− (κj − κk)λ.

As in the competitive equilibrium, when αj < αk (and κj > κk), this surplus is
increasing in ψ. Hence, there is a productivity threshold above which the social
planner prefers the entrepreneur to use the higher fixed (and lower marginal)
cost technology. Further, it follows from the above equation and the reasoning
in Proposition A.1 that the social planner adopts the exact same set of tech-
nologies as those adopted in the competitive equilibrium. Setting the above
equation to zero, yields the threshold above which the entrepreneur optimally
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adopts technology j + 1 instead of j:

ψ̄SP
j,j+1 =

(
κ∗j+1 − κ∗j

(α∗j+1)
1−σ − (α∗j )

1−σ

) 1
σ−1

σ
1

σ−1
σ

σ − 1
λ

σ
σ−1 = ψ̄SP

(
κ∗j+1−κ∗j

(α∗j+1)
1−σ−(α∗j )

1−σ

) 1
σ−1

α∗j (1 + κ∗j )
1

σ−1
.

The above equation proves that the productivity cut-offs for occupational and
technological choice in the competitive and socially optimal allocation are the
same up to a constant. It remains to prove that they are identical.

One can solve for ψ̄ in an exactly analogous way to solving for the thresh-
old in the competitive equilibrium: combine the resource constraint with the
definition of the entrepreneurial threshold and the relation between the en-
trepreneurial threshold and the technological choice thresholds. The terms de-
pending on λ cancel out and the following expression for the socially optimal
entrepreneurial threshold remains:

ψ̄SP = ψm

(
1 +

ξ(σ − 1)
ξ − σ + 1

) 1
ξ

(1 + κ̄)
1
ξ

where the average fixed cost among entrepreneurs, κ̄, is identical to the com-
petitive equilibrium and thus ψ̄SP = ψ̄CE. Thus, all cutoffs are identical and
the competitive equilibrium allocates each household to the socially optimal
occupation and technology.

Because both the relative labor demand across entrepreneurs and the total
labor supply are socially optimal, the amount of labor assigned to each en-
trepreneur is socially optimal. This means that output in the competitive equi-
librium is equal to the socially optimal output.

C.5 Proposition 1

Proposition 1 (Theoretical implications of scale-biased technical change).
Suppose that the productivity distribution is Pareto, f (ψ) = ξψ

ξ
mψ−ξ−1 with ξ >

σ − 1 and that σ > 2. Then, large-scale-biased technical change increases

(a) the average number of employees per firm;

(b) income inequality between entrepreneurs and workers;

(c) the income share that accrues to the top k% for any k below some k̄ ∈ (0, 100).
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Small-scale-biased technical change has the opposite effects.

Proof of Proposition 1. I prove Proposition 1 by proving its elements (a), (b), and
(c) sequentially.
Proposition 1(a): Since the average number of employees per entrepreneur or
firm, F(ψ̄)/(1 − F(ψ̄), is increasing in ψ̄ it suffices to show that ψ̄ increases
(decreases) with large-scale-biased (small-scale-biased) technical change.

If technical change is large-scale-biased, the new technology has highest
fixed costs. If it is the only adopted technology in the new equilibrium, it must
increase the average fixed cost κ̄, and thus ψ̄ (equation (13)). If it is instead
adopted alongside existing technologies, it cannot be used by the marginal en-
trepreneur (as that must have lowest fixed cost among adopted technologies).
As the equilibrium is socially efficient (Proposition A.3), output Y and thus
wages w must rise with a new adopted technology. The profit function in (1)
combined with equilibrium output and wages in (15) and (16) shows that prof-
its for any given technology is decreasing in w if σ > 2. Thus, ψ̄j must increase
for any pre-existing technology j, so that ψ̄ increases.

If technical change is small-scale-biased, the new technology has lowest fixed
cost. Thus, any entrepreneur with ψ ≥ ψ̄old that adopts the technology would
lower their fixed cost. Also, any existing entrepreneur that changes technol-
ogy will lower their fixed costs (since the wage cannot decrease with techni-
cal change and equation (2) is decreasing in wage/output). In sum, no en-
trepreneur with ψ ≥ ψ̄old increases their fixed costs and average fixed cost can
only rise if there is a set of entrepreneurs with ψ < ψ̄old that adopts a technol-
ogy j with κj > κ̄old, but this requires that ψ̄ and κ̄ declined. Hence, ψ̄ declines.
Proposition 1(b): Combining the resource constraint π̄(1− F(ψ̄))+wF(ψ̄) = Y
with Aw = Y for some A > 1 (equation (16)), yields that π̄

w = A−F(ψ̄)
1−F(ψ̄) . This is

increasing in ψ̄ so that the result follows from the Proposition 1(a).
Proposition 1(c): To show that top k% income shares increase for a small enough
k, it is sufficient to show that limψ→∞

π(ψ|Tnew)
π(ψ|Told)

> Ynew
Yold

(since this implies that
there is a strictly positive measure of entrepreneurs at the top of the income dis-
tribution whose income increases by more than average income Y). Similarly,
to show that this measure of top income inequality decreases, it is sufficient to
show that limψ→∞

π(ψ|Tnew)
π(ψ|Told)

< Ynew
Yold

.

When technical change is small-scale-biased, the most productive entrepreneurs
do not adopt the technology. Therefore, in the limit of ψ → ∞, profits decrease
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in absolute terms (since wages increase and σ > 2). Since output goes up, this
proves the statement.

Now consider the case when technical change is large-scale-biased. The
profit function in equation (1), implies

lim
ψ→∞

π(ψ|Tnew)

π(ψ|Told)
=

Ynew

Yold

(
α̃oldYold

α̃newYnew

)σ−1

.

where α̃old and α̃new are the lowest marginal cost technology before and after
the introduction of the new technology, respectively. Hence, it is sufficient to
prove that the proportional output increase is smaller than the decrease in the
lowest marginal cost, i.e., α̃oldYold

α̃newYnew
> 1.

To prove this, consider a scenario where the marginal cost of all technolo-
gies reduces proportionally without affecting fixed costs. From Proposition
A.1, it can be seen that such scenario leaves the set of adopted technologies
unchanged. From Proposition A.2, κ̄ and κ∗1 are also unchanged. Equations
(15) and (16) then imply that the output gain of such a uniform marginal cost
decrease would be α̃old

α̃new
. By efficiency of the equilibrium, the output gain from

a new technology with lower marginal but higher fixed costs must be strictly
lower. Therefore, α̃oldYold

α̃newYnew
> 1 when technical change is large-scale-biased.
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D Data appendix

D.1 Details on Dutch wealth data

Sources. The estate tax returns are referred to in Dutch as memories van suc-
cessie. Table D.1 reports the sources for each of the five provinces included in
the sample:

TABLE D.1: Sources of Dutch wealth data by provincial archive

Province Archive Record group(s)

Gelderland Gelders Archief Various record groups
Noord-Brabant BHIC Various record groups
Noord-Holland Noord-Hollands Archief Record group 178
Overijssel Collectie Overijssel Record group 136.4
Zeeland Zeeuws Archief Record group 398

Notes: BHIC stands for “Brabants Historisch Informatie Centrum”.

Details on digitization procedure. I first trained a state-of-the-art object de-
tection algorithm called YOLOv5 to filter out and crop relevant parts of millions
of scans of inheritance tax files. Thankfully, the form used in the inheritance tax
was consistent nationally and over time between 1879 and 1927. I trained the
object detection algorithm to recognize the location of the form that contains
the relevant information and automatically cropped the relevant parts of the
images shown in Figure 3. I apply this algorithm to 3,261,708 document scans.
Of those scans, 837,620 scans were detected to contain the relevant information.

After detecting and cropping the relevant parts of the source images, I then
trained another computer vision algorithm to extract information on the date of
death and the value of assets, liabilities, and net worth. This algorithm consists
of several steps. First, I trained an object detection algorithm to find the location
of the relevant information (e.g., date or wealth) in the cropped images. Then,
to extract the date of death, I trained three object classification algorithms that
respectively classify the date of death to be, e.g., the 18th day of the month,
the month of September, and the year 1912. Third, I trained an object detec-
tion algorithm to detect each number that appears in the wealth data. Finally, I
construct the wealth data, by combining the detected numbers with the infor-
mation on the detected location of assets, liabilities, and net worth data.
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An inherent advantage of the source files is that the wealth data present a
direct test of the accuracy of the digitization. That is, I test whether assets minus
liabilities equals net worth. The recognized numbers add up to the last digit in
82 percent of the cases. In 90 percent of the cases, the discrepancy is smaller than
20 percent. For those images for which the recognized numbers do not add up
exactly or for which either assets, liabilities, or net worth are not recognized,
I digitize the data using OpenAI’s GPT-4o. Since the GPT-4o method is prone
to errors, I only use this information if it can be validated with the numbers
obtained from the YOLO algorithm. That is, if net worth is consistent between
YOLO and GPT-4o or if both assets and liabilities are consistent. This procedure
increases the number of cases for which net worth can be validated up to the
last digit to 91.5 percent and those for which the discrepancy is below 20 percent
to 96.8 percent.

Matching with existing civil registry data. The civil death registry covers the
near-universe of deaths in the relevant provinces.41 The only exception is the
city of Amsterdam, for which the civil death registry is not digitized. While
the type of information that was digitized varies somewhat by archive, each
archive has digitized the name(s) of the decedent and their parents, the date
of death, the sex, and the place of death. In all cases except Noord-Brabant,
the age at death was also collected. To maximize the amount of information
available for each person that appears in the death records, I also link the civil
death records to the civil marriage and birth records.

I match the newly digitized inheritance tax by (fuzzy) matching based on
name, date of death, and inheritance tax district.42 In record linking terminol-
ogy, I use the relevant image set as defined by the place and date of death as
blocking variables for the linking between the inheritance tax records and the
civil registry data. This generates for each individual in the inheritance tax
records, a set of possible matches from the civil registry. From the set of avail-
able matches, I choose the most appropriate match (if any) by using a heuristic
multi-stage matching algorithm. The algorithm takes into account information
on the name and date of death.

41The civil registry data can be downloaded in bulk at here.
42A tax district consisted of a set of municipalities. Since the inheritance tax files are arranged

by tax district, the tax district can be inferred without any transcription.
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Description of micro-level database. Table D.2 summarizes the availability
of key variables and the total number of observations for which these variables
are observed. Around 79 percent of the observations can be linked to a record
in the civil death registry. Outside of Amsterdam, for which the registry is not
available, the match rate is over 90 percent. The civil registry data allow us to
narrow down the place of death to the level of the municipality. Furthermore,
the civil registry data often contain the age at death.43 I assign all observations
from the tax office in Amsterdam to the Amsterdam municipality.

TABLE D.2: Number of observations

Subset Observations

Individuals with wealth data 380,131
of whom municipality is known 370,311

of whom a civil registry link is available 301,920
of whom age at death is known 256,093

Notes: This table shows the number of observations for which key information is observed.
Besides rare exceptions, each is a subset of the other, so that the bottom row reflects the number
of individuals for whom their wealth, location, civil registry data, and age are recorded.

D.2 Details on Dutch income data

The main source of the Dutch local income distribution data is a parliamentary
document that recorded a detailed distribution of income for 79 municipalities
in 1883, including many large cities. These data were derived from local income
tax administrations and indicate the number of inhabitants within 41 income
brackets for each municipality.

I supplemented these data with data collected from local archives on the in-
come distributions of 8 additional cities with a local income tax whose distribu-
tion was not included in the parliamentary study. I thank Jan Luiten van Zan-
den for kindly sharing the data for Hilversum. Table D.3 provides an overview
of all the sources used.

43The age at death was always record in the source data, but in some cases this information
was not included by the archive in the digitized version of the registry.
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TABLE D.3: Sources of income distribution data for 8 additional cities

City Year Archive Source

Main sample 1883 House of Representatives 1883-1884, document no. 172.13
Breda 1881 Stadsarchief Breda Municipal year report 1880
Delft 1893 Stadsarchief Delft Municipal year report 1893
Eindhoven 1885 RHC Eindhoven Assessment lists, archive no. 10246.925
Enschede 1880 Stadsarchief Enschede Assessment lists, archive no. 1.1226
Hilversum 1880 Archive Prof. Van Zanden Assessment lists
Nijmegen 1880 Regionaal Archief Nijmegen Income by class, archive no. 2.14167
Utrecht 1888 Utrechts Archief Municipal year report 1900
Vlissingen 1883 Zeeuws Archief Assessment lists, available here.

E Details on steam engines and electric motors’ costs

In this section, I explain in detail the sources, assumptions and computations
underlying the average cost curves of steam and electric power shown in Figure
2. The underlying data for steam engines are taken from (Emery, 1883) (in 1874
US) and (Saitzew, 1914) (in 1914 Germany).

Table E.1 gives an overview of the data provided by Emery (1883). Saitzew
(1914) provided similar information. Saitzew (1914) provided cost estimates
depending on the intensity of use: 1500, 3000, 8640 hours per year (generally,
the higher the usage, the lower the cost per kWh). For consistency with Emery
(1883), I use the estimates for 3000 hours per year.

From the data provided by Emery (1883), I compute the annualized cost of
purchase and renewal as (r + δ) × Price where δ is estimated as the inverse
of the expected lifetime. I set the interest rate r equal to 0.05. For example,
the annualized cost of renewal of a 5 hp steam engine (worth $645) is $53.75.
The total costs per kWh are calculated as the sum of the annualized purchase
costs and the yearly operating costs divided by the yearly horsepower hours
(or kWh).
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TABLE E.1: Costs (in $, 1874) of steam engines of different capacities

Purchase costs Yearly operating costs ($)

hp Price ($) Life (yrs) Engineer Firemen Oil, etc. Repairs Coal

5 645 30 540.75 61.80 40.17 226.64

10 988 30 540.75 77.25 49.44 412.44

25 2441 30 695.25 101.90 83.43 752.41

50 5331 30 618.00 432.60 111.24 135.96 1202.82

100 9207 30 695.25 463.50 123.60 237.93 1898.28

250 20426 30 849.75 463.50 200.85 454.23 4504.68

500 36220 30 927.00 927.00 355.35 886.83 9009.94

Source: (Emery, 1883, p. 430).

For purchased electricity, the costs were only dependent on the rate sched-
ule offered by the utility. In principle, the utility could offer a flat rate to any
user. In practice, however, they gave discounts to large users. This probably to
some degree reflected the fact that the large users had more bargaining power
since their outside option was to use self-generated power in a relatively cost
effective way. I estimate this cost schedule by using data from the 1929 Census
of Manufactures microsamples. I estimate how an individual manufacturer’s
electricity rate was a function of the quantity of electricity purchased. Figure
E.1 shows the results. The fitted line in this graph is used in Figure 2.

FIGURE E.1: Electricity prices by quantity purchased (1929 US)
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This figure shows the electricity price in $ per kWh relative to the quantity of electricity pur-
chased for US manufacturing establishments in 1929. The line is the best fit of the non-linear
regression y = α + β exp(−γx). All data is from the 1929 Census of Manufactures microsam-
ples (Vickers and Ziebarth, 2018).
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